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Abstract� We introduce a new cryptosystem with trapdoor decryption
based on the di�culty of computing discrete logarithms in the class group
of the non�maximal imaginary quadratic order O�q � where �q � �q��
� square�free and q prime
 The trapdoor information is the conductor
q
 Knowledge of this trapdoor information enables one to switch to and
from the class group of the maximal order O�� where the representa�
tives of the ideal classes have smaller coe�cients
 Thus� the decryption
procedure may be performed in the class group of O� rather than in the
class group of the public O�q � which is much more e�cient
 We show
that inverting our proposed cryptosystem is computationally equivalent
to factoring the non�fundamental discriminant �q � which is intractable
for a suitable choice of � and q
 We also describe how signature schemes
in O�q may be set up using this trapdoor information
 Furthermore�
we illustrate how one may embed key escrow capability into classical
imaginary quadratic �eld cryptosystems
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� Introduction

Since Di�e and Hellman�s introduction of public key cryptography in ��� a variety
of encryption and signature schemes based on the discrete logarithm problem
�DLP	 have been proposed �

� ��� ���� Due to the nature of cryptosystems based
on the DLP� it is possible to replace the group ZZ�pZZ� in the classical protocols
by other nite Abelian groups in which the DLP is more intractable or the
implementation yields better performance� Popular examples are the group of
points on elliptic curves ���� 
��� the divisor class group of hyperelliptic curves



�
��� the group ZZ�nZZ�� where n is the product of two large primes �
��� and
the class group of imaginary quadratic elds ��� 
���

In this work we will focus on discrete log cryptosystems based on the class
group of non�maximal imaginary quadratic orders� This is a slight� but in prac�
tice very important generalization of ��� 
��� where only the class group of the
imaginary quadratic eld� i�e�� the class group of the maximal order was consid�
ered� It is known that the computation of discrete logarithms in the class group
of an imaginary quadratic order can be used to factor the corresponding discrim�
inant ��� ���� Thus� the inversion of these cryptosystems is at least as di�cult
as factoring� On the other hand� there is no good algorithm known to compute
discrete logs in the class group of the maximal order if only the factorization
of the discriminant is known� Therefore� these cryptosystems are very interest�
ing from a theoretical point of view� While the best algorithms for computing
discrete logarithms in class groups �
�� �� have sub�exponential complexity� they
are still too ine�cient for large discriminants�

However� the cryptosystems based on discrete logarithms in class groups have
not yet gained very much attention in practice� because the known implemen�
tations are still too ine�cient� A step towards practical cryptosystems based
on imaginary quadratic class groups is presented in this article� We introduce
a trapdoor variation of this type of cryptosystem which signicantly improves
the decryption procedure� The trapdoor information is the factorization of the
non�fundamental discriminant �q � �q�� where � is square�free and q is prime�
Knowledge of the conductor q enables one to switch to the class group of the
maximal order and back� Thus� the key�owner may take advantage of the short�
cut via the maximal order when decrypting� This is somewhat similar to the
application of the Chinese remainder theorem when generating RSA signatures�
However� the relative speedup is much higher in our proposed system�

If an attacker knows the factorization of the discriminant �q � �q�� our sys�
tem is no longer secure� since he is able to switch to the class group of the max�
imal order O� where he may easily attack the system using the sub�exponential
algorithms from �
�� ��� Hence� breaking our scheme is �only� equivalent to fac�
toring the discriminant� unless � is chosen su�ciently large�

Using the knowledge of the factorization of �q � one may compute the order
of the group of equivalence classes of O�q

via the maximal order� This enables
signature schemes in the class group of O�q

to be set up� Knowledge of the
conductor also enables one to set up a key escrow system by providing a non�
maximal order to users of a classical imaginary quadratic eld cryptosystem�

The paper is organized as follows� We rst brie�y discuss the relation between
the maximal and non�maximal orders in imaginary quadratic number elds� We
give algorithms to switch to and from the class group of the non�maximal order
to the class group of the maximal order and explain the parameter setup for the
new scheme� The new scheme is discussed in terms of security� this will include
a proof that breaking our scheme is computationally equivalent to factoring the
non�fundamental discriminant �q � �q�� We also present run time statistics for
various parameter sizes which illustrate the e�ciency of our new scheme� Finally�



we discuss how signature schemes and a key escrow system may be set up using
class groups of non�maximal imaginary quadratic orders�

� Orders in imaginary quadratic number �elds

Basic notions of imaginary quadratic elds and orders can be found in ���� �
��
or ���� For a more complete treatment of the relationship between maximal and
non�maximal orders we refer to ����

Let � be any non�square negative integer congruent to � or 
 modulo �� The
quadratic order of discriminant � is dened as

O� � ZZ �
��

p
�

�
ZZ �

The maximal order of the quadratic eld Q�
p
�	 will be denoted by O��

� and
the non�maximal order with conductor f will be denoted by O�f

� where �f �
f���� If the conductor is prime� we will denote it by q rather than f� and the
corresponding non�maximal order will be denoted by O�q

� All primitive ideals
of an order O� will be presented in standard representation�

a �

�
ZZ �

b�
p
�

�a
ZZ

�
� �a� b	�

where a � ZZ��� b
� � � �mod �a	� and �a � b � a� Recall that a primitive

ideal is reduced if a � c and b � �� if a � c or jbj � a� where c � �b� ��	��a� It
can be shown that a reduced ideal a satises N �a	 � a �pj�j��� On the other

hand� if N �a	 �� pj�j��� then a is reduced� The set of all invertible ideals of
O� will be denoted by I�� and the set of all invertible� principal ideals by P��
Ideal equivalence is denoted by a � b� and the class group and class number of
O� are denoted by Cl��	 and h��	� respectively�

Our cryptosystem makes use of the relationship between non�maximal orders
O�f

and the maximal order O��
in Q�

p
�	�

Proposition �� Let O be an order in the quadratic �eld Q�
p
�	� Then O has

�nite index in O��
� If we set f � �O��

� O�� then O � ZZ � fO��
and the

discriminant of O is equal to f����

Proof� See ��� Lemma ���� page 
���� ut
Note that this proposition also justies the notation O�f

� A nice property of
�nonzero� fractional	 ideals in the maximal order O��

is that all ideals are in�
vertible� This is not true for non�maximal orders O�f

� However� we will see that
this holds for a slightly smaller subset� namely the ideals which are prime to the
conductor f �

De�nition �� Let O� be an order in an imaginary quadratic eld and m � IN�
We say that a nonzero ideal a of O� is prime to m if a�mO� � O��



In our case� where we are interested in O�f
�ideals� we have the following�

Proposition �� Let O�f
be an order of conductor f and a � O�f

be a nonzero
O�f

�ideal� Then

�� a is prime to the conductor if and only if its norm N �a	 is relatively prime
to f � i�e�� gcd�N �a	� f	 � 
�

�� If a is prime to the conductor f � then a is invertible�

Proof� See ��� Proposition ���� page 
�� and Lemma ��
�� page 
���� ut
Furthermore� we know that the norm of ideals prime to the conductor is multi�
plicative� as it is for ideals in the maximal order�

Proposition �� Let O�f
be an order of conductor f and a� b be nonzero O�f

�
ideals� Then N �ab	 � N �a	N �b	�

Proof� See ��� Lemma ��
�� page 
���� ut
The set of invertible ideals of O�f

� i�e�� the ideals which are prime to f �
will be denoted by I�f

�f	� Then the above propositions show that they form a
subgroup of I�f

� Inside this subgroup we have a smaller subgroup� the principal
ideals of O�f

which are prime to f � This subgroup is denoted by P�f
�f	�

Proposition �� There is an isomorphism

I�f
�f	
�
P�f

�f	 � I�f

�
P�f

� Cl��f 	 �

Proof� See ��� Proposition ��
�� page 
���� ut
This shows that we may �neglect� the O�f

�ideals which are not prime to the
conductor if we are only interested in the class group Cl��f 	� To express how
this isomorphism can be used for our purposes� we have the following�

Proposition �� Let O�f
be an order of conductor f in an imaginary quadratic

�eld Q�
p
�	 with maximal order O��

�

�� If A is an O��
�ideal prime to f � then a � A � O�f

is an O�f
�ideal prime

to f and N �A	 � N �a	�
�� If a is an O�f

�ideal prime to f � then A � aO��
is an O��

�ideal prime to f
and N �a	 � N �A	�

�� The map � � A 	
 A � O�f
induces an isomorphism I��

�f	
�
I�f

�f	� The
inverse of this map is ��� � a 	
 aO��

�

Proof� See ��� Proposition ����� page 
���� ut
The next proposition shows that if we are only concerned with equivalence

classes of ideals� then the primality condition in Proposition � does not impose
an insurmountable obstacle�



Proposition �� Let O� be an order in an imaginary quadratic �eld� Given a
nonzero integer f � then every ideal class in Cl��	 contains an O��ideal prime
to f �

Proof� See ��� Corollary ��
�� page 
���� ut
We will restrict ourselves to the case where the conductor is prime in our

cryptosystem� To implement our scheme� we will need constructive versions of
Proposition � and �� Therefore� we will give simple algorithms for computing an
O��ideal prime to the conductor q and for switching from I��

to I�q
and back�

Algorithm � 	FindIdealPrimeTo
�
Input� A primitive O��ideal a � �a� b	 and a prime q
Output� A primitive O��ideal A � a � �A�B	� such that gcd�N �A	� q	 �
gcd�A� q	 � 


�� IF gcd�a� q	 � 
 THEN
�a� c� �b� ��	��a
�b� IF gcd�c� q	 � 
 THEN �� Compute A� ��

i� A� a� b� c
ii� B � �b� �a

�c	 ELSE �� Compute A� ��
i� A� c
ii� B � �b

�d	 RETURN�A�B	
�� ELSE RETURN �a� b	

Proof 	Correctness
� Let c � �b���	��a� Then for any ideal a � �a� b	 we have
gcd�a� b� c	 � 
 by denition�

First we will show that at least one of the numbers a� c� a� b� c is relatively
prime to q� Suppose that gcd�a� q	 � 
� and gcd�c� q	 � 
� i�e�� q ja and q j c�
Further� suppose that gcd�a� b� c� q	 � 
� i�e�� q j �a� b� c	� This implies that
q j b� which is a contradiction to gcd�a� b� c	 � 
�

Now we will show that the new coe�cients A�B�C � �B� � �	��A satisfy
gcd�A�B�C	 � 
� and therefore �A�B	 is the standard representation of a primi�
tive ideal� A� � �c��b	 is obviously an ideal in standard representation� because
gcd�c��b� a	 � 
� Next we consider A�� Note that C � ���b� �a	� ��	����a�
b�c		 � a� A similar argument as above shows that gcd�a�b�c��b��a� a	 � 
�

It remains to show that the ideals A� or A� are indeed equivalent to a� Let

� � b�
p
�

�a � �� � � �
� � �b�p�

�c � �� � � �
��� � �b��a�p�

��a�b�c� and Ai � �ZZ � �iZZ	�

i � f
� �g� Then easy calculation shows that

a � a�ZZ � �ZZ	 � a��



�
ZZ � ZZ	 � a��ZZ � 


�
ZZ	 �

a�

c
�cZZ � c��ZZ	 �

a�

c
A�

and

a � a�ZZ � �� � 
	ZZ	 � a�� � 
	�ZZ � 


� � 

ZZ	 �

a�� � 
	

a� b� c
A� �

ut



We now give algorithms for switching from the set of invertible ideals of the
maximal order I��

to the set of invertible ideals of the non�maximal order I�q

and back� These algorithms will be the key ingredients of our proposed scheme�
which is discussed in more detail in Section ��

Algorithm � 	GoToNonMaxOrder
�
Input� A primitive O��

�ideal A � �A�B	� the conductor q
Output� A primitive O�q

�ideal a � ��B	 � �B	 � O�q
� �a� b	� where B � A

and gcd�N �B	� q	 � 


�� �a� bq	�FindIdealPrimeTo�A� q	

�� b� bqq mod �a

	� RETURN �a� b	

Proof 	Correctness
� After Step 
 we have gcd�a� q	 � 
 and may apply � from
Proposition �� Now N �B	 � N �a	 � a by Proposition ��
	� The assertion about
b is immediate by Proposition 
 and the uniqueness of b mod �a� ut

The step from I�q
back to the maximal order is almost as simple� This

algorithm allows anybody who knows the fundamental discriminant �� and�or
the conductor q to switch to the maximal order O��

�

Algorithm � 	GoToMaxOrder
�
Input� A primitive O�q

�ideal a � �a� b	� the fundamental discriminant �� and the
conductor q
Output� A primitive O��

�ideal A � ����b	 � �b	O��
� �A�B	� where b � a and

gcd�N �b	� q	 � 


�� �A�B	�FindIdealPrimeTo�a� q	

�� bO � � mod �

	� Solve 
 � �q � 	A for �� 	 � ZZ


� B � B��AbO	 mod �A

�� RETURN �A�B	

Proof 	Correctness
� After Step 
 we have gcd�A� q	 � 
 and may apply ���

from Proposition �� Again� N �b	 � N �A	 � A by Proposition ���	� Note that
we constructed � in Step � such that � � f�� �mod A	� This inversion is always
possible� because gcd�A� q	 � 
� Furthermore� the assertion about B follows from
the standard algorithm for ideal multiplication� ut

Our proposed cryptosystem in Section � is constructed over �q � ��q
��

where q is a prime integer� In this case� the condition for a reduced ideal to be
prime to the conductor q is given by the following Lemma�

Lemma �� Let �q � ��q
�� If q is a prime such that

pj��j � q� then every
reduced ideal in Cl��q	 is prime to q�



Proof� Let a � �a� b	 be a reduced ideal in Cl��q	� and c � �b� � �q	��a�
Assume contrary to our assertion that gcd�a� q	 � 
� which implies q j a because
q is prime� We know that b� � �ac � ��q

�� Since q j a� this implies that q j b��
q j b and q� j b�� Because a is reduced it holds that a �

pj��jq��� � q
pj��j���

Thus� since q ja� we must have q� � j a� because pj��j�� �
pj��j � q� Since

q� j b� it follows that q j c� because �ac � b� ���q
�� b� j q� and q� � ja� However�

this is a contradiction to the requirement gcd�a� b� c	 � 
 for a reduced ideal� ut

Thus� if we chose the conductor q such that
pj��j � q� then all reduced ideals

in the non�maximal order are prime to q�
It is important to note that the isomorphism � is between the ideal groups

I��
�q	 and I�q

�q	� and unfortunately not the class groups� If� for A�B � I��
�q	

we have A � B� it is not necessarily true that ��A	 � ��B	� On the other hand�
equivalence does hold under ��� �

Theorem � For a� b � I�q
�q	 such that a � b� ����a	 � ����b	�

Proof� This follows from the exact sequence�

Cl��q	 �
 Cl��	 �
 


�see ��
� Theorem 
���� p� ���	� ut

We will make use of the following lemma in our proposed cryptosystem�

Lemma ��� For a � I�q
�q	�

����a	x � ����ax	 �

Proof� Use the fact that � is an isomorphism between ideal groups and combine
this with Theorem �� ut

Furthermore� we can show that the isomorphism � induces a correspondence
between reduced ideals in Cl��	 and Cl��q	 if we restrict ourselves to reduced
ideals with small norm�

Lemma ��� Let A be a reduced ideal in O��
prime to q where q is a prime�

Then a � ��A	 is also reduced in O��
�

Proof� Let A be a reduced ideal in O��
� which is prime to q� Then N �A	 �pj��j�� holds� By Proposition � we know thatN �a	 � N �A	 � A �pj��j�� �pj�q j�� �

pj��jq���� for q � 
� This implies that a is also reduced in O��
� ut

Lemma ��� Let a � �a� b	 be a reduced ideal in O�q
prime to q� where q is a

prime� If a �pj��j��� then A � ����a	 is a reduced ideal in O��
�

Proof� By Proposition �� we know that N �A	 � N �a	 �pj��j��� This implies
that A is reduced in O��

� ut



By these two Lemmas and Proposition � there is a one�to�one correspondence
between reduced ideals in Cl��q	 and Cl���	 whose norms are smaller thanpj��j���

Finally� we give the relationship between the class numbers h���	 and h��f 	�

Theorem ��� Let O�f
be the order of conductor f in an imaginary quadratic

�eld Q�
p
�	 with maximal order O��

� Then

h��f 	 �
h���	f

�O���
� O��f

�

Y
p j f

�

� ����p	

p

�
� nh���	�

where n � IN and ����p	 is the Kronecker�symbol�

Proof� See ��� Theorem ����� page 
���� ut

� The new cryptosystem

��� System setup

The setup of the proposed cryptosystem is very simple� Alice chooses a large
prime p� If p � � �mod �	 then � � �p� else � � ��p� Obviously � is a
fundamental discriminant� Next she chooses another large prime q and computes
the non�fundamental discriminant �q � �q�� i�e�� q will be the conductor of the
publicly available non�maximal order O�q

�
Alice now chooses any prime O�q

�ideal g � �g� bg	� This may be done by
selecting a prime g where ��q�g	 � 
 and computing bg� i�e�� a square�root of
�q mod �g using Shanks� probabilistic algorithm RESSOL� A version of RESSOL
with expected run time O��log g	��log�q  log g	� and a deterministic algorithm
for computing the Kronecker�symbol ��q�g	 in O��log g	

��log g log�q	 may be
found in� for example� �
�� page �� ��� Alice must then compute her individual
keys� She chooses a random integer a � ��� bpj�q jc� and computes the reduced
ideal a equivalent to ga� The exponentiation is done via some Square � Multiply
variant and the algorithmsMultiply� Square and Reduce from ��� or NUCOMP and
NUDUPL from ����� We summarize the public and private system parameters�

Public Private
non�fundamental discriminant �q secret key a
O�q

�ideal g �base ideal	 conductor q
O�q

�ideal a �public key	

��� Encryption

Encryption is done completely analogous to ElGamal encryption �

� in the non�
maximal orderO�q

�We embed the plaintext in an O�q
�ideal m� select an integer

k� and compute�
ek�m� k	 � �y�� y�	�



where y� and y� are reduced ideals in I�q
and

y� � gk� y� � mak �

Note that the encryption is carried out entirely in the class group of the non�
maximal order� and that all ideal arithmetic is performed with reduced ideals�
Furthermore� we require N �m	 �

pj�j�� in order to uniquely decrypt the mes�
sage m �see Lemma 
�	�

��� Decryption

The decryption algorithm is similar to ElGamal decryption� but here we make use
of our trapdoor information� namely the factorization of �q � All ideal arithmetic
is done with reduced ideals in the maximal order as opposed to the non�maximal
order�

Algorithm � 	Decrypt
�
Input� The ciphertext ek�m� k	 � �y�� y�	� y�� y� � I�q

� the conductor q
Output� m� the O�q

�ideal containing the embedded plaintext�

�� Y� �GoToMaxOrder�y�� q	�
�� Y� �GoToMaxOrder�y�� q	�
	� M � Y��Y

a
�	
���


� m �GoToNonMaxOrder�M� q	�
�� RETURN�m	

Proof 	Correctness
� By denition� we have Y� � ����y�	 and Y� � ����y�	�
From Lemma 
� it follows that

Y� � ����mak	

� ����m	����ak	

� ����m	����a	k

� ����m	Ak

and

Ya
� � ����gk	a

� ����g	ak

� Gak

� Ak �

Thus� we have

M � ����m	AkA�k

� ����m	 �

Since m was selected such that N �m	 �
pj�j��� we can uniquely decrypt

��M	 � m� from Lemma 
�� ut



��� Security of the proposed cryptosystem

The main advantage of this protocol over an ElGamal protocol using only arith�
metic in the non�maximal order is that decryption is performed in the maximal
order� where the coe�cients in the ideal representations are signicantly smaller
than those of the non�maximal order� We will now show that this computational
advantage does not incur any loss in security�

Theorem ��� Assume that we can solve the discrete logarithm problem in
Cl��	� Then breaking the proposed cryptosystem is computationally equivalent
to factoring the discriminant �q � �q��

Proof� �Sketch	 Assume� that there is an algorithm for breaking the proposed
cryptosystem which computes the message ideal m� Then we know the ideals
g� a� gk and ak� This means that the Di�e�Hellman problem in Cl��q	 can be
solved using this algorithm� It is proved that �see ���	� an algorithm for solving
the Di�e�Hellman problem in the imaginary quadratic class group of O�q

can
be used to nd the ambiguous ideals carrying factorizations of �q � �q�� Hence
we can reduce factoring the discriminant to breaking the proposed cryptosystem�

On the other hand� if one is able to factor the non�fundamental discriminant
�q � �q� he may switch to the maximal order O� and solve the discrete loga�
rithm problem in Cl��	 which is assumed to be possible� Thus� the computation
of discrete logs in Cl��q	 can be reduced to factoring �q � �q�� ut

Remark that the assumption of being able to solve the discrete logarithm
problem in Cl��	 is not unrealistic� since we choose � small to speed up the
computations� Note furthermore that unlike the case of factoring of polynomials
over nite elds �see� for example� ��� Section ����	� no algorithm is known which
computes the �square�free factorization� of an integer substantially easier than
the complete factorization�

��� Parameter Sizes

Since breaking our proposed scheme is equivalent to factoring the public non�
fundamental discriminant �q � we have to choose the parameters �� q such that
factoring �q � �q� is infeasible� Considering this situation yields the following
requirements�

� �q has to be large enough that it can�t be factored with O������o���	�
methods� see e�g� ����

� � and q have to be large enough that they can�t be found with the elliptic
curve method �
��

� �q has to be large enough that it can�t be factored with the number eld
sieve ���

� �signature setup only	 � has to be small enough that the computation of
h��	 is possible�
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 time �sec�
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��
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�� �
�
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��
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�� �
� �
��
���� ��� ��� �
�� �
�� �
�� �
�

Table �� Runtime Statistics

First� note that usual square root methods reduce to cube root methods� because
�q � �q� and it is su�cient to know all prime factors up to the cube root� For
example� the deterministic algorithm of Pollard and Strassen �see ���� Section

��	 has running time O��
����o���
q 	� If �q � ����� these methods are certainly

infeasible�

The general number eld sieve has a conjectured running time

L�q
�
��� �����	

���
�� where Lx�a� b� � exp�b�logx	a�log logx	��a	� Hence� select�

ing �q � �	�� will ensure that attempting to factor it with the number eld
sieve is infeasible today�

The elliptic curve method has been used to nd factors of up to 
�� bits
length� Hence� we must select �� q � ��
� to ensure that an adversary cannot
factor �q � If � � ����� the DL problem in Cl��	 can be solved in reasonable
time by anyone who knows the factorization of �q �
��� so selecting � � ����

may add an even greater level of security to our scheme�

��� Run�time Statistics

In order to demonstrate the improved e�ciency of our trapdoor decryption� we
implemented our scheme using the LiDIA library �
�� It should be emphasized
here that our implementation was not optimized for cryptographic purposes � it
is only intended to provide a comparison between decrypting in the non�maximal
order and using our trapdoor decryption� For ve di�erent non�maximal orders
of various sizes� we have computed the average run time for encryption� classical
decryption� and our trapdoor decryption of fty randomly selected messages
using randomly selected exponents� The results of these computations can be
found in Table 
� Dec denotes the average time for classical decryption and Decq
denotes the average time for the trapdoor decryption� The encryption is identical
in both schemes� and the average time is denoted by Enc� We also give the run
time for RSA decryption �DecR	 using a modulus of the same size as �q � All
run times are given in CPU seconds on a 
�� Mz SPARC�ultra machine�

As expected� our results clearly demonstrate an improvement in the decryp�
tion time� This is due to the fact that almost all of the arithmetic is carried
out with reduced ideals in the maximal order� Hence� the operands are of size
approximately

pj�j� rather than pj�jq� as in the case where the trapdoor in�



formation is not used� Our decryption method is still not as fast as that of RSA�
but it is at least comparable�

� Further applications

It is in principal possible to use knowledge of the factorization of �q to set
up ElGamal�style and RSA�style signature schemes� If we select the fundamen�
tal discriminant � such that computing h��	 is feasible� then we can use the
following corollary of Theorem 
� to compute h��q	 at very little extra cost�

Corollary ��� Let p� q � � be primes and � � �p� if p � � �mod �	� or
� � ��p� otherwise and ���q	 be the Kronecker�symbol� Then

h��q	 � h��q�	 � h��	 �q � ���q		 �

Proof� Since p� q � �� the group of units O�� � O��q� � f�
g� Thus �O���
� O��q

�
in Theorem 
� equals 
� Noting that q is prime concludes the proof� ut

Knowledge of h��q	 allows us to set up DL�based signature schemes in Cl��q	
very easily� Moreover� computing h��q	 using the sub�exponential algorithm of
Hafner�McCurley �
�� or its more practical versions from �
�� and �
�� are still
impractical for suitable choices of �q� Unfortunately� these signature schemes
have the disadvantage that the signature generation and verication both take
place in the non�maximal order� so no extra e�ciency is gained using this ap�
proach� Also� the security of these schemes is also computationally equivalent to
factoring� so they probably have no signicant advantages over regular ElGamal
or RSA signature schemes�

An interesting side�e�ect of our scheme is that it is possible to set up a key
escrow cryptosystem using the classical imaginary quadratic eld cryptosystem�
Instead of a fundamental discriminant� the key provider simply issues a non�
fundamental discriminant of which only he knows the conductor to the users of
the protocol� The users have no way of knowing that they are encrypting and
decrypting in a non�maximal order� but the key provider can easily read their
messages by solving the DLP in the maximal order� Hence it is important for any
users of such protocols to ensure that they only use fundamental discriminants�
and to have their key provider prove that the discriminant he issues is indeed
fundamental� This could be done as follows�

Assume that Bob wants to prove to Alice that � is squarefree� Remark that
if � and 
��	 are coprime� then � is squarefree� Alice chooses a random integer
x� computes y � x� and sends it to Bob� If � and 
��	 are indeed coprime�
then Bob can compute an integer e such that e  � � 
 �mod 
��		 using
the extended Euclidean algorithm� So Bob computes z � ye and sends it to
Alice� Alice compares x and z� if they are not equal� Alice rejects �� If � is not
squarefree� then Bob can cheat with probability at most 
�q� where q� j�� Thus
after several iterations without rejecting� Alice will believe that � and 
��	 are
coprime� and hence � is squarefree�



Note that this method fails to prove squarefreeness for integers of the form
pq where q j �p � 
	� for example� However� a key provider can easily select a
squarefree discriminant � coprime to 
��	 which he can prove is squarefree
using the protocol given above�
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