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Abstract� In ��
� and ���� there are proposed ElGamal�type cryptosys�
tems based on non�maximal imaginary quadratic orders with fast trap�
door decryption	 The trapdoor information is the factorization of the
non�fundamental discriminant �q � �q�	 We will extend the ideas given
there to set up Rabin and RSA analogues based on non�maximal imagi�
nary quadratic orders	

To implement the Rabin analogue we will introduce a new algorithm�
which reduces the computation of square roots in Cl��q� to the compu�
tation of square roots in Cl���	 This is more e�cient than the classical
Gaussian algorithm	 If the class number h��� for � � �p� p � � mod 

prime� is known� it is possible to extract square roots by a simple expo�
nentiantion	 In this case it is easy to set up RSA analogues as well	 It
will be shown� that breaking the Rabin analogue is as hard as factoring�
just like the original scheme in �ZZ�nZZ��	

The major advantage of our schemes compared to the original Rabin and
RSA schemes is that they are immune against the currently known low
exponent attacks and the chosen ciphertext attack from ����	

Keywords� Rabin� RSA� non�maximal imaginary quadratic order� fac�
torization� low exponent attack� chosen ciphertext attack

� Introduction

The utilization of imaginary quadratic class groups in cryptography is due to
Buchmann and Williams ���� who proposed a key agreement protocol analogue to
��� based on class groups of imaginary quadratic �elds� i�e� the class group of the
maximal order� Since the computation of discrete logarithms in the class group
of the imaginary quadratic number �eld is at least as di�cult as factoring the
corresponding discriminant 	see ��� 
��� these cryptosystems are very interesting
from a theoretical point of view� In practice however these cryptosystems have as
yet not gained very much attention� because they seemed to be less e�cient than



popular cryptosystems based on computing discrete logarithms in 	ZZ�pZZ��� like
��� 
� or factoring integers� like �
�� 

�� Another issue is that the computation of
the group order� i�e� the class number� is in general almost as hard as computing
discrete logarithms itself by application of the algorithm of Hafner � McCurley
���� or more practical variants like ���� which is subexponential with L� �� � and
hence it seemed to be impossible to set up signature schemes analogue to �
�

�� �
� 
�� or �
��� In ���� however it was shown how the application of non�
maximal imaginary quadratic orders may be used to construct an ElGamal�
type cryptosystem with faster decryption and that it is in principle possible
to set up ElGamal and RSA�type signature schemes� In �
�� it was shown how
imaginary quadratic orders can be used to construct public key cryptosystems
with quadratic decryption time�

In this work we will extend these ideas and propose a cryptosystem ana�
logue to Rabin�s �

�� We will show� that breaking the proposed Rabin analogue
based on the di�culty of computing square roots in the class group of imaginary
quadratic orders is equivalent to factoring� just like the original scheme over
	ZZ�nZZ��� We will outline the classical Gaussian algorithm� based on reduc�
tion of ternary quadratic forms� to compute square roots in arbitrary imag�
inary quadratic class groups� Then we introduce an entirely new algorithm�
which reduces the computation of square roots in Cl	�q� to the computation
of square roots in Cl	��� which is much more e�cient than Gauss� algorithm
in Cl	�q�� because the size of the coe�cients in the class group of the maximal
order Cl	�� is much smaller� In this case one may choose a prime discriminant
� � �p � � mod � and extract square roots in Cl	�� by suitable exponentia�
tion� Note� that this is possible� because the class number h	�� � h	�p� is odd
by genus theory 	see e�g� ������

If h	�� and therefore h	�q� is known it is a natural generalisation to allow
arbitrary public exponents e as long as gcd	e� h	�q�� � �� which yields schemes
analogue to RSA� We will give strong evidence� that the proposed schemes are
immune against currently known low exponent attacks and the chosen ciphertext
attack proposed in �����

For this RSA�type setup however the knowledge of h	�� is essential� There�
fore one may choose discriminants of the form �pq � �p�q�� where � � �� and
p and q are large odd primes� In this case it is very easy to compute the class
number h	�pq� and set up RSA analogues� Since we have to deal with larger
numbers however� this approach seems to loose much of its attractiveness�

This paper is organized as follows� In Section 
 we will provide the neces�
sary basics on imaginary quadratic orders emphasizing the relation between the
maximal order and non�maximal orders� In Section � we will discuss the system
setup for the proposed Rabin� and RSA analogues considering di�erent formed
discriminants� In Section � we will give algorithms to compute square roots in
imaginary quadratic class groups� This will include a new approach� which re�
duces the computation of square roots in Cl	�q� to the compuation of square
roots in Cl	��� Section � is concerned with the security of the proposed schemes�



This will show� that breaking the Rabin analogues is equivalent to factoring the
corresponding public discriminants �� � �pq��q � �pq� or �pq � ��p�q�
respectively� Furthermore we will give strong evidence� that our schemes are im�
mune against currently known low exponent attacks and the chosen ciphertext
attack ���� against the unbalanced RSA scheme �
��� For convenience we will give
the details of the Gaussian square root extraction algorithm in the appendix�

� Imaginary quadratic orders

The basic notions of imaginary quadratic number �elds may be found in ��� ���
or ���� For a more comprehensive treatment of the relationship between maximal
and non�maximal orders we refer to ��� or �����

Let� � �� � mod � be a negative integer� which is not a square� The quadratic
order of discriminant � is de�ned to be

O� � ZZ �
��

p
�



ZZ� 	��

If �� is squarefree� then O��
is the maximal order of the quadratic number

�eld Q	
p
��� and �� is called a fundamental discriminant� The non�maximal

order of conductor f � � with 	non�fundamental� discriminant �f � ��f
� is

denoted by O�f
� In this work we will omit the subscripts to reference arbitrary

	fundamental or non�fundamental� discriminants� Because Q	
p
��� � Q	

p
�f �

we also omit the subscripts to reference the number �eld Q	
p
��� The standard

representation of a primitive O��ideal is

a �

�
ZZ �

b�
p
�


a
ZZ

�
� 	a� b�� 	
�

where a � ZZ��� c � 	b� ����	�a� � ZZ� gcd	a� b� c� � � and �a � b � a� The
norm of this ideal is N 	a� � a� A primitive ideal is called reduced if jbj � a � c
and b � �� if a � c or jbj � a� It can be shown� that the norm of a reduced
ideal a satis�es N 	a� � pj�j�� and conversely that if N 	a� � pj�j�� then
the ideal a is reduced� Note that this fact will be essential for the immunity of
our scheme against the chosen ciphertext attack ����� We denote the reduction
operator in the maximal order by ��	� and write �f 	� for the reduction operator
in the non�maximal order of conductor f �

The group of invertible O��ideals is denoted by I�� Two ideals a� b are
equivalent� if there is a � � Q	

p
��� such that a � �b� This equivalence relation

is denoted by a � b� The set of principal O��ideals� i�e� which are equivalent
to O�� are denoted by P�� The factor group I��P� is called the class group of
O� denoted by Cl	��� Cl	�� is a �nite abelian group with neutral element O��
The order of the class group is called the class number of O� and is denoted by
h	���



Our cryptosystems make use of the relation between the maximal and non�
maximal orders� Any non�maximal order may be represented as O�f

� ZZ �
fO��

� An O��ideal a is called prime to f � if gcd	N 	a�� f� � �� It is well known�
that all O�f

�ideals prime to the conductor are invertible� In every class there is
an ideal which is prime to any given number� The algorithm FindIdealPrimeTo in
���� will compute such an ideal� If we denote the 	principal� O�f

�ideals� which
are prime to f by P�f

	f� and I�f
	f� respectively then there is an isomorphism

I�f
	f�
�
P�f

	f� � I�f

�
P�f

� Cl	�f �� 	��

Thus we may �neglect� the ideals which are not prime to the conductor� if we are
only interested in the class group Cl	�f �� There is an isomorphism between the
group of O�f

�ideals which are prime to f and the group of O��
�ideals� which

are prime to f � denoted by I��
	f� respectively�

Proposition �� Let O�f
be an order of conductor f in an imaginary quadratic

�eld Q	
p
�� with maximal order O��

�

	i�� If A � I��
	f�� then a � A � O�f

� I�f
	f� and N 	A� � N 	a��

	ii�� If a � I�f
	f�� then A � aO��

� I��
	f� and N 	a� � N 	A��

	iii�� The map � � A �	 A � O�f
induces an isomorphism I��

	f�
�	I�f

	f��
The inverse of this map is ��� � a �	 aO��

�

Proof � See ��� Proposition ��
�� page ���� � �

Thus we are able to switch to and from the maximal order� The algorithms
GoToMaxOrder	a� f� to compute ��� and GoToNonMaxOrder	A� f� to compute
� respectively and the proofs for the following propositions may be found in �����

Note� that the above map is de�ned on ideals itself� rather than equivalence
classes� But it is easy to show� that

Proposition �� For a� b � I�f
	f� and � � Q	

p
�� such that a � �b we have

���	a� � ���	b�

and that we indeed have a one to one correspondence of classes� if the norm
of the reduced representatives is small�

Proposition �� If A � I��
	f� is reduced then �	A� � I�f

	f� is also reduced�

Proposition �� If a � I�f
	f� with N 	a� � pj��j�� then ���	a� � I��

	f� is
also reduced�

The problem introduced by switching from the maximal order O��
to the

non�maximal order O�f
is� that there are principal O��

�ideals which image
under � is not principal in O�f

� But the following fact is well known�



Proposition �� Let 	 � O��
be an element of the maximal order and O�f

be
the order of conductor f � Then � 		O��

� � O�q
if and only if

	 � a mod fO��

with a � ZZ such that gcd	a� f� � �

Proof � This is an immediate consequence of the isomorphism ��� Proposition
��

�page ����

Cl	�f � � I��
	f�
�
P���ZZ	f�

�

where P���ZZ 	f� denotes the subgroup of I��
	f� generated by the principal

ideals of the form 	O��
where 	 � O��

satis�es 	 � a mod fO��
for some

a � ZZ such that gcd	a� f� � �� �

Finally it is well known� that the class numbers h	��� and h	�f � are related
by

Theorem �� Let O�f
be the order of conductor f in an imaginary quadratic

�eld Q	
p
�� with maximal order O��

� Then

h	�f � �
h	���f

�O�
��

� O�
�f

�

Y
pjf

�
���

�
��

p

�
p

�
A � nh	����

where n � IN and
�
��

p

�
is the Kronecker�symbol�

Proof � See ��� Theorem ��
�� page ���� � �

� System Setup for Rabin and RSA analogues

In this section we will discuss the system setup and the necessary procedures to
implement Rabin and RSA analogues based on imaginary quadratic orders� It is
clear� that the form of the public discriminant greatly a�ects the possible sys�
tem setups and the procedures for signing�decrypting and verifying�encrypting�
Therefore we will distinguish three cases �� � �pq� 	if �pq � � mod � or
�� � ��pq otherwise�� �q � ���q

� and �pq � ���p
�q�� We assume� that

a message m � IN which is to be encrypted or signed is embedded in a reduced
ideal m � I�q

	q�� This embedding� which is needed for the implementation of
the ElGamal analogue proposed in ���� as well� might be accomplished by set�
ting am � N 	m� � 
sm � r� where s is �xed and r is choosen� such that am is

prime and
�
�q

am

�
� � is the Kronecker symbol� I�e� that it is possible to compute

the corresponding bm� which is a square root of �q modulo �am� That such a
construction is always possible and that the resulting ideal m is indeed reduced
will be ensured by a suitable choice of s� Note however� that a bad embedding



might jeapordize the claimed security� Thus the embedding has to be considered
with more scrutiny in a forthcoming paper� In the following we will treat the
Rabin and RSA analogues seperately�

��� Maximal Order �� � �pq �or �� � ��pq	

Rabin analogue This is the classical setup for the Rabin analogue based on
maximal imaginary quadratic orders� Here p� q are two large primes and the
public discriminant �� � �pq� if pq � � mod � or �� � ��pq otherwise� Like
in the original scheme it can be shown 	see ������ that breaking this scheme 	i�e�
computing square roots in Cl	���� is equivalent to factoring ��� An algorithm
to compute square roots in Cl	��� which goes back to Gauss is outlined in
Section �� The interested reader will �nd the details in the appendix�

RSA analogue On the other side it is clear� that it is not possible to set up
RSA analogues� simply because the computation of the class number h	��� is a
very hard problem� Unlike the construction of the original RSA system� it does
not help� that one knows the factors of �� to speed up the computation� With
current algorithms it is even more di�cult to compute h	��� than to factor it�

��� Non
maximal Order �q � ��q
�

In ���� it was shown� how the utilisation of non�maximal imaginary quadratic
orders may be used to set up ElGamal�type cryptosystems with fast decryption�
incorporate key escrow functionality into classical cryptosystems and how the
ElGamal signature and RSA analogue may be set up in principle� The crucial
point in this system setup is the computation of the class number h	�q�� Let
p� q be two large primes� Set �� � �p if p � � mod �� �� � ��p otherwise and
�q � ��q

�� If h	��� is known then computing h	�q� is easy using Theorem ��
Thus it is possible to set up ElGamal�signature and RSA analogues 	working
exclusively in the non�maximal order��

In this work we will show� how the relation between the public non�maximal
order and the secret maximal order may be further utilised to implement more
e�cient Rabin and RSA analogues�

Rabin analogue For the Rabin setup the number of square roots in the class
group is essential� Therefore we introduce a slight restriction on the form of the
fundamental discriminant �� in this case� We choose a large prime p � � mod �
and �� � �p� Then we know by genus theory 	see e�g� ������ that there is exactly
one genus in Cl	���� i�e� every class in Cl	��� is a square� the square root of a
class is unique and that the class number h	��� is odd� We will return to this fact
in the next section� where we introduce a new algorithm for the computation of
square roots in Cl	�q�� which is more e�cient than Gauss� algorithm�



We omit the presentation of the signature� veri�cation and encryption pro�
cedure� because it is completely analogous to the original scheme �

� over
	ZZ�nZZ���

Algorithm �� �RabinDecrypt�
Input� 	c� ��� q�� where c � I�q

	q� is the cyphertext� �� � �p � � mod � is
the fundamental discriminant and q is the conductor
Output� The message m � I�q

	q�

�� m� 
Sqrtq	c� ��� q�

� p
 	p� ��
�� m� 
 �q	m�p�
�� choose message m �out of m���� with the appropriate form� redundancy� � � �
�� RETURN�m�

Correctness� Since we choose �q � �pq� there are by genus theory exactly
two square roots in Cl	�q�� The ideal p � 	p� �� is the reduced representative of
the unique 	non�trivial� ambigue ideal in Cl	�q�� That means� that O�q

�� p �
I�q

	q� is the only ideal such that p� � O�q
� Thus if we compute one square root

m� of the ciphertext c using the procedure Sqrtq we immediately get the second
square root m� � �q	m�p� by a simple multiplication with reduction� That it
is possible to distinguish between the two possible messages one has to embed
some redundancy into the message ideal� just like in the original Rabin scheme
over 	ZZ�nZZ��� �

RSA analogue If h	��� is known and h	�q� can be computed using Theorem
�� it is a natural generalization to allow public exponents e other than 
� as long
as gcd	e� h	�q� � � to implement RSA type cryptosystems in this spirit�
The signature setup for the RSA analogue is completely analogous to the orig�
inal scheme� I�e� the public exponent e and the secret exponent d are related
by ed � � modh	�q�� For the encryption of small messages m with N 	m� �pj��j�� however we are able to set up a more e�cient decryption procedure
in analogy to Shamir�s unbalanced RSA �
��� Here the exponents are related
by ed � � modh	��� and the decryption takes place in the class group of the
maximal order� We will show in Section � that this scheme seems to be immune
against the chosen ciphertext attack proposed in �����

Algorithm 
� �RSADecrypt�unbalanced�
Input� 	c� ��� q�� where c � I�q

	q� is the cyphertext� �� is the fundamental
discriminant� q is the conductor and d is the secret exponent�
Output� The message m � I�q

	q�

�� C
GotoMaxOrder	c� q�

� M
 ��	C

d�
�� m
GotoNonMaxOrder	M� q�



�� RETURN�m�

Correctness� By Proposition 
 we may switch to the maximal order without
problems� Since ed � � modh	��� and the norm N 	M� of the resulting M is
small by assumption we may switch back to the non�maximal order by consid�
ering Proposition �� �

��� Totally Non
maximal Order �pq � ��p
�q�

To set up RSA analogues one has to be able to compute h	��� using the subex�
ponential algorithm of Hafner�McCurley ���� to derive h	�q� by application of
Theorem �� If �� is choosen to be large this will become a formidable task or 	for
�� �� ����� even impossible� In this case we suggest to use public discriminants
of the form �pq � ��p

�q�� where p� q are two large primes and the fundamental
discriminant might be choosen to be �� � �� for example� In this case it is
well known� that h	��� � � and therefore one may easily compute h	�pq� using
Theorem �� Since one has to deal with larger numbers however this setup seems
to be of theoretical interest only�

� Computing square roots in Cl���

In Section ��� we will outline the Gaussian algorithm which may be used to
compute square roots in the class group of maximal as well as non�maximal
imaginary quadratic orders� In Section ��
 we will introduce a new algorithm�
which is more suitable for our purpose� because it allows more e�cient compu�
tation�

��� Gauss� square root extraction algorithm

Here we will turn to the description of an algorithm due to Gauss� Shanks� and
Lagarias which determines the square root of a given square in the class group
of an imaginary quadratic order O�� This algorithm runs in random polynomial
time in the binary length of the input O	log j�j� if the factorization of the
discriminant is given as part of input 	������

First� we note that there is another way of describing the class group of
an imaginary quadratic order� One can describe the same object in terms of
binary quadratic forms instead of ideals� The use of binary quadratic forms will
simplify the presentation of the square root extraction algorithm in quadratic
class groups� There is a well known isomorphism between the 	ideal� class group
of an imaginary quadratic order and the form class group of the corresponding
discriminant 	see e�g� �
���� If Q is a positive de�nite binary quadratic form then
the equivalence class of Q is given by �Q�� For the form class group we also
write Cl	��� We will recall the most important de�nitions concerning binary



and ternary quadratic forms in the appendix� The most details can be found in
standard books like ���� ����� All the details are given in �����

Now we present the square root extraction algorithm due to Gauss� Shanks�
and Lagarias� Let � be an arbitrary negative integer� which is not a square in
ZZ with � � ��� � � � mod �� 	Odd discriminants are handled in a similiar
fashion� see �
���� We assume that the factorization of the disriminant � is given
as part of the input� Without loss of generality let Q � 		� 

� �� be the uniquely
determined representative in �Q��

Outline of the Gaussian algorithm for computing square roots in
Cl	��

�� Embedding in a ternary form of determinant ��
Embed Q in a ternary quadratic form Q� with determinant ���

Q	x� y� � Q�	x� y� �� with detQ� � ��
Solve the system of simultaneous congruences for m� n� where � � �

�
� detQ�

m�
� � mod �

m � n � �� mod �

n� � � mod �

We can �nd a solution of this system because we know the factorization of
� � �

�
�

� � p��
�

� � � p�rr

So we have to solve the congruences mod p�ii and to bring together the so�
lutions with the Chinese remainder theorem� For the computation of square
roots mod p�ii we know an e�cient algorithm which �in general� presupposes
the knowledge of a quadratic non�residue mod pi� In practice� we can deter�
mine e�ciently such a non�residue �by try and error�� but we do not know a
deterministic polynomial time algorithm for this task� This is the only random
step of the algorithm�

Determine a symmetric matrix A � ZZ��� with detA � �� and

A �

�
� � �

� � �

� � �

	
and adjoint matrix A� �

�
� � n
� � m
n m �

	
�

�By the relation between A and its adjoint A� this can be done in a unique way��

Let Q� be the associated ternary quadratic form� then Q� accomplishes the conditions

given above�


� Reduction to � � y� � �xz
Determine the matrix M � SL	�� ZZ�� which reduces Q� to � � y� � 
xz�

Q�
M � � � y� � 
xz

This is done in the following way� Reduce Q� in the sense of reduction of ternary

quadratic forms and carry the transformation matrix along� There is at least one re�

duced ternary quadratic form in every equivalence class� Especially� there are exactly �	



reduced forms with determinant ��� After transforming Q� to an equivalent reduced

ternary form� we have to apply yet another transformation which is easily found in

order to get the ternary form ��

�� Construction of a square root

Compute S ��M�� and write S �

�
a� b� c�
a� b� c�
a� b� c�

	
�

Set u �� b�� v �� �a�� d �� gcd	u� v�� replace u� v by u
d �

v
d � respectively� Set

k ��


 �
d 	a�b� � b�a��



� If gcd	k�� 
�� � � thenn
set u �� b�� v �� �a�� d �� gcd	u� v�� replace u� v by u

d �
v
d � respec�

tively� and set k ��


 �
d 	a�b� � b�a��



 o�
Applying the extended Euclidean algorithm determine some integers r� s where

ur � vs � �� Set W ��
�
u s
v r

�
� Compute QW �

�
k�� l�m

�
	l�m � ZZ�� Set

G �� 	k� l� km�� Then we have �G� � Cl	�� and �G�� � �Q��

The details of this algorithm will be explained in the appendix� As we noted
earlier this algorithm runs in random polynomial time in the binary input length
O	log j�j� if the factorization of � is given as part of input�

Proposition � �����	� Let the complete factorization of the discriminant � be
given� If the extended Riemann Hypothesis is true or� alternatively� if a quadratic
nonresidue ni is given for each prime pi dividing � the square root extraction
algorithm in Cl	�� terminates in O	log jDj��M	log jDj�� elementary operations
in the worst case where M	n� is an upper bound on the number of elementary op�
erations necessary to multiply two integers of at most n bits� �Due to Schoenhage
and Strassen ����	� such an upper bound is given by M	n� � c � n log n log log n
where c is a suitable constant�

��� A new algorithm to compute square roots in Cl��q	

In this section we will introduce a new method to compute square roots in
Cl	�q�� First we show� how the computation of square roots in Cl	�q� may
be reduced to the computation of square roots in the maximal order Cl	����
It would be possible to compute this square root with the Gaussian algorithm
above� Since h	��� is odd however� it is possible to compute such a square root
in Cl	��� by a simple exponentiation�

Algorithm ��� �Sqrtq via Sqrt��
Input� 	m� ��� q�� where m � I�q

	q�� �� � �p � � mod � is the fundamental
discriminant and q is the conductor�
Output� A square root s of m in Cl	�q��

�� M
GotoMaxOrder	m� q�




� compute R 
 ��	M� and the relative generator 	 � Q	
p
��� such that

R � 	M
�� compute T 
 Sqrt�	R� and the relative generator 
 � Q	

p
��� such that

T� � 
R
�� compute � such that O��


 	
�� � a mod qO��
for some a � ZZ such that

gcd	a� q� � �
�� S
 �T
�� s
GotoNonMaxOrder	S� q�
�� RETURN�s�

Correctness� The strategy of this algorithm is to take care of the relative
generators introduced by reduction during the computation and to �correct�
this generator by multiplication with �� in such a way� that the overall generator
	
�� � O��

satis�es

	
�� � a mod qO��
�

for some a � ZZ with gcd	a� f� � � such that �			
���� � O�q
� The rest of the

algorithm is straight forward�

s� � �	S��

� �	S��

� �	��T��

� �	
��R�

� �		
��M�

� �		
�����	m�

� m�			
����

� m

Note� that the last equivalence follows from Proposition �� �

Note� that the general strategy of this algorithm� i�e� switching to the maximal
order and taking care of the relative generators� can be applied to the ElGamal�
and RSA analogues as well� It should be mentioned� however� that the size of
relative generator 
 in step � depends on the exponent� I�e� this strategy is well
suited for low exponents� This issue and a comparison of the algorithms in terms
of complexity and e�ciency will be adressed in the full paper�

Like pointed out above� it would be possible to use a tailormade version of
Gauss� algorithm to implement Sqrt�� If the 	odd� class number h	��� however
is known� we can do better�

Algorithm ��� �Sqrt� via Exp�
Input� 	R� h	����� where R is a reduced O��

�ideal and h	��� is the class
number� where �� � �p � � mod � is a prime discriminant�
Output� The square root T of R in Cl	����



�� T � ��	R
�h����������

Correctness� By genus theory we know� that h	��� is odd� because �� � �p
is a prime discriminant� Noting� that 	h	�������
 � 
 � � modh	��� concludes
the proof� �

� Security Considerations

In this section we will discuss the security of the proposed cryptosystems� First
we consider the security of the Rabin analogue cryptosystem� Like in the original
scheme over 	ZZ�nZZ�� we can prove� that breaking one of our Rabin schemes
is as hard as factoring the corresponding discriminant�

Theorem ��� Breaking the Rabin analogue cryptosystems based on maximal�
non�maximal� or totally non�maximal orders is as hard as factoring the corre�
sponding discriminant�

Proof�	Sketch� see ���� for the details� If one knows� the factorization of the
discriminant� then one will be able to compute square roots in the class group
under consideration using the Gaussian algorithm in Section ����

Suppose that one posseses an algorithm Sqrt� which computes square roots
in Cl	�� and thus can break our scheme� Then one will be able to construct
a 	non�trivial� ambigue class� which carries a factorization of �� This may be
done by choosing a random class �A� � Cl	�� and computing �B� �Sqrt	�A����
We repeat this procedure until �B� �� �A�� Then �A� � �B��� is a non�trivial am�
bigue class� This process may be iterated with the factors to obtain the complete
factorization of �� �

Next� we discuss the security of the RSA analogue cryptosystems� If the pub�
lic modulus n � pq is factored� then the original RSA cryptosystem is broken�
On the contrary� it is unknown whether breaking the RSA cryptosystem is as
intractable as factoring the modulus� The relationship between the public ex�
ponent e and the secret exponent d for RSA cryptosystem is given by ed � �
	mod L�� L � LCM	p � �� q � ��� and it is easily veri�ed that the computation
of L is as hard as factoring n�

In our RSA analogue based on non�maximal orders of discriminant �q �
��q

�� the relationship between the public exponent e and the secret exponent d
is given by

ed � � 	mod h	�q���

Because the fastest known algorithm to compute h	��� is sub�exponential in
log	���� we can not break the proposed RSA analogue in the non�maximal order
in polynomial time by knowing the factorization of �q � It is therefore unknown



whether the computation of h	�q� is computationally equivalent to factoring
�q �

Next� we consider the RSA analogue in the totally non�maximal order �pq �
��p

�q�� The relationship between the public exponent e and the secret exponent
d is given by

ed � � 	mod h	�pq���

Therefore� if the discriminant �pq is factored� then the RSA analogue is broken�
On the contrary� it is unknown that to break RSA cryptosystem is as intractable
as factoring the discriminant� It is easily veri�ed that the computation of h	�pq�
is as hard as factoring the discriminant �pq � This situation is completely analo�
gous to the original scheme over 	ZZ�nZZ���

Small message attack In the following� we explain that the usage of the
small norm message is not secure� even though breaking the Rabin analogue
cryptosystems is as intractable as factoring the discriminant� In the ring ZZ� a�

	mod n� is equal to a� without reduction modulo n for small a such as jaj � pn�
Similarly� it is known that if N 	a� � pj�j�� holds� then the ideal a is already
reduced� Thus� a� is a reduced ideal if N 	a� � 	j�j������� and the reduction
operation for a� is never performed� Let a � 	a� b�� then N 	a�� equals 	a�d��

for d � gcd	a� b�� If d � �� we can simply calculate a by computing the integer
square root� In the same manner� when we encrypt ae using a small norm ideal
a such that N 	a� � 	j�j������e� it is not secure in this case�

Low exponent attack For the RSA cryptosystem and Rabin cryptosystem� if
we send the same message encrypted for di�erent recipients� then the original
message can be recovered� This attack is called the low exponent attack ��
� �

��
The low exponent attack and its variations are based on the properties of the ring
	ZZ�nZZ� for a composite integer n� Consider a cryptosystem which encryption
function is a polynomial P 	x� 	mod n�� When we encrypt the same message M
by di�erent encryption functions Pi	M� 	mod ni� for i � �� 
� � � � � k� then the
low exponent attack computes the polynomial with the same small message P 	M�

	mod N�� N �
Qk

� ni using the Chinese remainder theorem� Thus� becauseM �
N��k� the low exponent attack is converted to the previous small message attack�
If attackers try to apply the low exponent attack� they have to apply the Chinese
remainder theorem in the �rst step�

However� such an Chinese remainder concept is not known to exist for imag�
inary quadratic class groups with di
erent maximal orders�

Let us discuss the minimal requirements to mount the low exponent attack
slightly more abstract� We will only consider the Rabin scheme� the generalisa�
tion to the RSA analogue is immediate� Let m� � Cl	��� and m� � Cl	��� be
ideal�embeddings for some message m � IN� The corresponding ciphertexts are
given by c� � �	m�

�� and c� � �	m�
�� respectively� One would have to choose a



group G and de�ne homomorphisms �� � G 	 Cl	��� and �� � G 	 Cl	����
Then the low exponent attack would be to �nd a group element C � G such
that ��	C� � c� and ��	C� � c� and one is able to compute a square root M of
C in G with little e�ort to obtain the message by computing m� � ��	M� for
example�

The most natural choice seems to be G � Cl	������ which is the direct
analogue to the original attack ��
�� In this case however such homomorphisms
are not known to exist� Furthermore such homomorphisms could be useful to
reduce the computation of the class number h	����� to the computation of
h	��� and h	���� This indeed would be small revolution in algorithmic number
theory�

It seems to be a di�cult task to �nd a suitable group G and homomorphisms�
with the above properties to apply the low exponent attack to our schemes
with that little we know about the relation between di
erent maximal orders in
imaginary quadratic number �elds� Thus our schemes can be implemented with
low exponents and are therefore more e�cient than traditional schemes over
	ZZ�nZZ���

Chosen ciphertext attack Adi Shamir proposed an interesting variant of RSA
� the unbalanced RSA scheme �
��� which allows faster decryption of comparably
small messages� The key generation is performed by computing ed � � mod p���
the encryption is performed by computing C � Me modn and the decryption
of messages� which have to be smaller than p� is performed by computing M �
Cd mod p�

In ���� it is shown that a chosen ciphertext attack� with a ciphertext whose
corresponding plain message M � p will entirely break the scheme� i�e� factor
the modulus n � pq by computing gcd	M � �M�n� � p� where M � � p is the
falsely decrypted message� Note that this kind of attack works� because ZZ�nZZ
is not only a group but a ring�

In the following we will give strong evidence that our proposed unbalanced
RSA scheme over non�maximal imaginary quadratic class groups does not have
this vulnerability and thus can be used for e�ciently decrypting rather small
messages in a secure manner�

Consider the attack against our proposed scheme� Let m be a message ideal
such that N 	m� �

pj��j��� Thus by getting decrypted the ciphertext c �
�q	m

e� one obtains a reduced ideal m� �� m� where ���	m� � ���	m�� in Cl	����
From knowing these two ideals only it seems impossible to factor the discriminant
�q �

Now we will consider the case where we apply the above attack several times�
Let ALD be an oracle which decrypts ciphertexts c of previously encrypted
messages m� I�e� ALD	m� returns some message ideal m� with N 	m�� �

pj��j��
where m� is the decrypted ciphertext c � �q	m

e�� By the answer of this oracle
we can obtain some information about the size of ���



ALD	m� �� m� N 	m� �
p
j��j�� ALD	m� � m� N 	m� �

p
j��j��

Note that if
pj��j�� � N 	m� �

pj��j�� then the oracle may return the
right message depending on whether ���	m� is reduced in Cl	��� or not� Be�
cause this range has size about �������

pj��j it would need an exponential

number 	in log� j��j� of trials to obtain a good approximation of
pj��j�� orpj��j��� Therefore the chosen ciphertext attack is not applicable in our case�
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A Appendix

In the �rst two sections of the appendix we will recall the most important notions
about binary and ternary quadratic forms� In an third section we will explain
why the Gaussian square root extraction algorithm outlined in Section ��� works�

A�� Preliminaries

Let � � �� � mod � be an integer which is not a square� We consider binary
quadratic forms F � 	a� b� c� � F 	X�Y � � aX� � bXY � cY � in two variables
X�Y with coe�cients a� b� c � ZZ� Let U � SL	
� ZZ� 	i�e� an integral 
 � 
�
matrix of determinant ��� then we de�ne FU �� F

�
�U � 	X�Y �T �T �� and the

relation F � G
def� �U � SL	
� ZZ� � FU � G is an equivalence relation� �F �

is the equivalence class of F � The binary quadratic form F � 	a� b� c� has the
discriminant � � b� � �ac� F is positive de�nite 	negative de�nite�� if � � �
and a � � 	a � �� resp��� F is inde�nite if � � �� If � is a square then F



is irregular� F is called primitive if gcd	a� b� c� � �� If F is positive de�nite or
negative de�nite then there is a unique representative in the equivalence class
of F � and this representative 	called reduced form� can easily and e�ciently be
computed� Such a reduced form F � 	a� b� c� satis�es jaj �pj�j��� This fact is
used in the reduction algorithm for ternary quadratic forms which is applied in
the square root extraction algorithm in Section ���� 	For details see ������

A�� Ternary quadratic forms

In the following� we give a short introduction to the reduction of ternary quadratic
forms which is a subroutine of the Gaussian square root extraction algorithm�
A ternary quadratic form is a polynomial in three variables F 	x� y� z� � a��x

��
a��y

� � a��z
� � 
a��xy � 
a��xz � 
a��yz� where aij are some �xed integers�

The associated matrix of F is the matrix MF ��

�
a�� a�� a��
a�� a�� a��
a�� a�� a��

�
� Let F be the

associated ternary form of MF � The determinant of F is det F �� detMF �

and we say that the adjoint of MF is MF
� �

�
A�� A�� A��

A�� A�� A��

A�� A�� A��

�
� ZZ��� where

Aij � 	���i�j � det	A�
ij�� 	A

�
ij� � ZZ��� is the matrix which one obtains after

deleting the ith row and the jth column� The adjoint form F � of F is de�ned
as the associated ternary form of 	MF �

�� Let XT � 	x� y� z�� S � ZZ��� We
de�ne FS	XT � �� F 		SX�T �� The ternary quadratic forms F�G are equivalent�
if there is a unimodular matrix S � SL	�� ZZ� such that FS	XT � � G	XT �� It
holds� that FS � G if and only if STMFS �MG� We say in this case that S is a
transformation matrix which transforms the ternary form F to the form G� This
relation is an equivalence relation� A ternary quadratic form F with associated
matrix MF � 	aij�i�j and adjoint MF

� � 	Aij�i�j � ZZ��� is called reduced if
the following relations holds

	i� ja��j � �
� � jdet F j

�

� and 	ii� jA��j � �
� � jdet F j

�

� �
	iii� If a�� � �� then a�� � A�� � �� ja��j � �

�gcd	a��� a��� and ja��j �ja��j�
	iv� If a�� �� �� then A�� �� �� ja��j � �

� ja��j� jA��j � �
� jA��j and jA��j �

�
� jA��j�
In each equivalence class of ternary quadratic forms there is at least one reduced
form� and there is a deterministic polynomial time algorithm which computes a
reduced ternary form which is equivalent to the given ternary form� and the cor�
responding transformation matrix� The reduction of a ternary quadratic form F
can be done by a combination of reduction of binary quadratic forms which are
deduced from the ternary form F � The binary quadratic forms which occur here
as intermediate results are not always positive de�nite� They can be negative
de�nite 	the discriminant and the �rst coe�cient are both negative�� inde�nite
	the discriminant is positive and not a square�� or irregular 	the discriminant
is a square�� �Reduction� then means �nding an equivalent binary quadratic



form such that the �rst coe�cient of the resulting form becomes less or equal topj�j��� The details can be found in �����

A�� The idea of the algorithm

Let the primitive positive de�nite binary quadratic form Q be an arbitrary rep�
resentative of the given form class �Q� � Cl	��� We search for a form class
�G� � Cl	�� with �G�� � �Q�� We now explain the crucial idea of the Gaussian
algorithm� The following lemma is for our task of central interest�

Lemma ��� Let 	a� b� c� be a binary quadratic form of discriminant � with
gcd	a� b� � �� Supposed the representation �a�
b � � with integers �� 
 is given
it holds�

�	a� b� c��
�
�


	a�� b� 

ac� c��

� � Cl	��

where c� is an integer which is uniquely determined by the discriminant ��
If� furthermore� c is a multiple of a� then the following equation holds�

�	a� b� c��
�
�


	a�� b� c�a�

� � Cl	�� �

This lemma can be used in the following way for computing a square root �G� of
�Q��

	�� Construction of �G��
Supposed we know some integers u� v with

Q	u� v� � k� �

where k� is an arbitrary square in ZZ which is relatively prime to 
� and
where k is positive� Without loss of generality let d �� gcd	u� v� � �� 	Oth�
erwise we replace u� v by u

d �
v
d � respectively�� Using the extended Euclidean

algorithm we �nd r� s � ZZ with ur � vs � �� Then we have W ��
�
u s
v r

�
�

SL	
� ZZ� andQ � QW � 	Q	u� v�� l�m� �
�
k�� l�m

�
with some integers l�m�

The binary quadratic form G �� 	k� l� km� has the discriminant l�� �k�m �

D and is primitive because of gcd	k� l� km� � gcd	k� l�
	
� gcd	k� 
�� � � 	t ��

gcd	k� l� � t jD � l� � �k�m � t j gcd	k� 
�� � � � t � ��� Due to
Lemma �� it holds that �G�� � �QW � � �Q��

	
� Computation of suitable integers u� v�
We still have to explain how to �nd integers u� v with the properties of 	���
The task of determining a representation of a square in ZZ by a quadratic
form is easily solved for reduced ternary forms of determinant ��� For ex�
ample� �	x� y� z� � y�� 
xz is a reduced ternary quadratic form with deter�
minant ��� Assumed we know a matrix S � SL	�� ZZ� with

Q	x� y� � �S	x� y� �� �



If we write S �

�
a� b� c�
a� b� c�
a� b� c�

	
� then it follows�

Q	x� y� � �

��
S �
�
x
y
�

	�T�

� �	a�x� b�y� a�x� b�y� a�x� b�y�

� 	a�x� b�y�
� � 
	a�x� b�y�	a�x� b�y� �

By a suitable choice of x � u and y � v the second term becomes zero and
we have found a representation of a square in ZZ by Q� E�g� with u �� b�
and v �� �a� it holds Q	u� v� � 	a� � b� � b� � 	�a���� � k��

	�� Computation of a suitable matrix S�
Finally we show how to determine a matrix S � SL	�� ZZ� with Q	x� y� �
�S	x� y� ��� At �rst� we embed the binary quadratic form Q in a ternary
quadratic form Q� of determinant ��� i�e� we compute a ternary form Q�

with detQ� � �� and Q	x� y� � Q�	x� y� ��� We can �nd such a ternary
form Q� if and only if �Q� is a square in Cl	�� 	see �
� ���� This involves
the computation of square roots mod �� hence the factorization of � 	see
above�� Now we determine the matrix M � SL	�� ZZ� wich transforms the
ternary form Q� to the reduced ternary form ��

Q�
M 	x� y� z� � �	x� y� z� � y� � 
xz

By applying the unimodular transformation S �� M�� on every side of the
equation we get Q�	x� y� z� � �S	x� y� z�� Setting z � � this matrix S ful�lls
the desired relation�

Q	x� y� � Q�	x� y� �� � �S	x� y� �� �


