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Abstract� We discuss the discrete logarithm problem over the class
group Cl�� of an imaginary quadratic order O�� which was proposed
as a public�key cryptosystem by Buchmann and Williams ���� While in
the meantime there was found a subexponential algorithm for the com�
putation of discrete logarithms in Cl�� ����� this algorithm only has
running time L��

�

�
� c� and is far less e�cient than the number �eld sieve

with Lp�
�

�
� c� to compute logarithms in IF�p� Thus one can choose the

parameters smaller to obtain the same level of security� It is an open
question whether there is an L��

�

�
� c� algorithm to compute discrete log�

arithms in arbitrary Cl���

In this work we focus on the special case of totally non�maximal imagi�
nary quadratic orders O�p such that �p � ��p

� and the class number of
the maximal order h��� � �� and we will show that there is an L�p �

�

�
� c�

algorithm to compute discrete logarithms over the class group Cl��p�
The logarithm problem in Cl��p can be reduced in �expected O�log

� p
bit operations to the logarithm problem in IF�p �if �

��

p
 � � or IF�p� �if

���

p
 � �� respectively� This result implies that the recently proposed

e�cient DSA�analogue in totally non�maximal imaginary quadratic or�
der O�p �
�� are only as secure as the original DSA schemes based on
�nite �elds and hence loose much of its attractiveness�

� Introduction

A general and possible inherent problem of all currently known public key cryp�
tosystems is that their intractability is based on certain unproven assumptions�
Thus nobody can guarantee that popular cryptosystems based on factoring in�
tegers or computing discrete logarithms in some group remain secure for the
future� Therefore it is important to study alternative primitives and di�erent
groups to have a backup if one assumption such as the intractability of factoring
or computation of discrete logarithms in one group turns out to be false� Beside



the multiplicative group of �nite �elds and the group of points on �hyper�� el�
liptic curves over �nite �elds� a very promising candidate for a group in which
the discrete logarithm is hard is the class group Cl��� of imaginary quadratic
orders� like proposed by Buchmann and Williams �	
 in ��		� For example the
discrete logarithm problem in Cl��� has the interesting property that it is at
least as hard as factoring the discriminant�� Another reason which makes study�
ing imaginary quadratic orders O� very important today is that these rings are
isomorphic to the endomorphism rings of non�supersingular elliptic curves over
�nite �elds� Thus a good understanding of these rings can shed some light on
the real diculty of the discrete logarithm problem in elliptic curves� While one
year later Hafner and McCurley discovered a subexponential algorithm ���
 to
compute discrete logarithms in Cl���� this algorithm only has running time
L��

�

�
� �
 and is far less ecient than the number �eld sieve to compute discrete

logarithms in IF�p or factoring integers with Ln�
�

�
� � ��

�
����
� The precise de�nition

of Ln�e� c
 will be given in Section �� Thus one may choose the relevant parame�
ters smaller to obtain the same level of security� It is an open question whether
there is an L��

�

�
� c
 algorithm to compute discrete logarithms in arbitrary imag�

inary quadratic class groups Cl���� Note that as mentioned above this would
imply another asymptotically fast algorithm for factoring integers� because fac�
toring the discriminant � is reduced to the computation of discrete logarithms
in Cl����

Furthermore these cryptosystems based on imaginary quadratic class groups
are not only interesting from a theoretical point of view� Recently there were
proposed cryptosystems with very practical properties� We will only name a few
cryptosystems based on imaginary quadratic orders here and refer to Section
� for a more comprehensive survey � In ���
 there was proposed a public key
cryptosystem with quadratic decryption time� To our knowledge this is the only
known cryptosystem having this property� First implementations show that the
decryption is as ecient as RSA�encryption with e � ��� � �� While this cryp�
tosystem is based on factoring� it is also possible to set up interesting DL�based
cryptosystems using non�maximal imaginary quadratic orders� If one uses the
recently developed exponentiation technique for totally non�maximal orders ���

it is possible to implement ecient DSA�analogues� The running time is roughly
comparable to DSA in IF�p and there is certainly much space for further improve�
ments� The major property of these totally non�maximal orders is that the class
number of the maximal order h���� � � and thus the class number of the non�
maximal order h��p� � p����

p �� where the conductor p is prime and ���

p � is the
Kronecker�Symbol� is known immediately� Note that these totally non�maximal
quadratic orders are therefore analogous to supersingular elliptic curves� where
one also knows the group order in advance�

In this work we will show that they do not only share this property with
supersingular elliptic curves� We will show that the discrete logarithm problem
in totally non�maximal imaginary quadratic orders can be reduced to the discrete
logarithm problem in IF�p �if �

��

p � � �� or IF�p� �if ���

p � � ��� respectively� The
reduction is very ecient and can be performed in �expected� O�log� p� bit



operations� Thus the situation for cryptosystems based on imaginary quadratic
orders is somewhat analogous to the situation for cryptosystems based on elliptic
curves� This may be summarized as follows�

While there is no known algorithm with L��
�

�
� c
 for the computation of

discrete logarithms in imaginary quadratic class groups in general� there
are problem classes for which such an algorithm is known� This is no
general problem however� because it is easy to avoid these weak classes
in practice�

It is clear that an analogous statement for elliptic curves would be somewhat
sharper and consider algorithms with subexponential running time Lp�e� c
� e �
��

This paper is organized as follows� In Section � we will give a brief survey
of cryptosystems based on imaginary quadratic orders� because many results
appeared very recently and are sometimes not yet published� Section � gives the
necessary background and notations of imaginary quadratic orders� In Section
� we will provide the main result of this paper which consists of the reduction
of the discrete logarithm problem in totally non�maximal imaginary quadratic
orders to the discrete logarithm problem in �nite �elds� Finally� in Section ��
we will conclude this work by discussing the cryptographic implications of our
result�

� A brief survey of cryptosystems based on imaginary

quadratic orders

We will only highlight the most important works in this direction� As mentioned
above it is a general problem that the security of popular cryptosystems is based
on unproven assumptions� Nobody can guarantee that DL�type cryptosystems
based on �nite �elds or elliptic curves over �nite �elds will stay secure forever�
Thus it is important to study alternative groups which can be used if an ecient
algorithm for the computation of discrete logarithms in one particular type of
group is discovered�

��� The early days � maximal orders

With this motivation Buchmann and Williams �	
 proposed to use imaginary
quadratic class groups Cl��� for the construction of cryptosystems� A nice
property of this approach is that breaking this scheme is at least as dicult
as factoring the fundamental discriminant � of the maximal order� Furthermore
it should be mentioned that imaginary quadratic orders are closely related to
non�supersingular elliptic curves over �nite �elds� They happen to be isomorphic
to their endomorphism ring� Thus a sound understanding of imaginary quadratic
orders may lead to a better understanding of the real security of elliptic curve



cryptosystems� In ��		� when they proposed these groups for cryptographic pur�
poses� the best algorithms to compute the class number h��� and discrete loga�
rithms in Cl��� were exponential time algorithms with L����

�

�

 ���� ��
 assuming

the truth of the Generalized Riemann Hypothesis �GRH� or L����
�

�

 without

this assumption� In ��
 there was reported the �rst implementation and a com�
plexity analysis of this key agreement scheme� For example it was shown that
the complexity of an exponentiation in Cl��� needs O�log� j�j� bit operations�
which is fairly inecient compared to the original scheme ���
 which is of cubic
complexity� Another problem of cryptosystems based on class group Cl��� of
the maximal order� was that the computation of the class number h��� is almost
as dicult as the computation of discrete logarithms� Thus it seemed impossible
to set up signature schemes analogous to DSA ���
 or RSA ��	
�

Even worse for this approach was the discovery of a subexponential time
algorithm ���
 by Hafner and McCurley in ��	�� This algorithm has running
time L��

�

�
� c
 and can be used to compute the class number h��� and with some

modi�cations to the computation of discrete logarithms in Cl��� as shown in ��
�
Note that at this time the asymptotically best algorithm for factoring integers
was the quadratic sieve ���
 with running time Ln�

�

�
� �
 if one makes certain

plausible assumptions� The situation for discrete logarithms in IF�p was similar
these days� The algorithm due to Coppersmith� Odlyzko and Schroeppel �COS�
���
 to compute discrete logarithms in prime �elds also has running time Lp�

�

�
� �
�

Thus one was inclined to consider cryptosystems based on imaginary quadratic
class groups Cl��� to be unsuitable for practical application�

��� The recent revival � non�maximal orders

In the meantime however an idea of Pollard lead to today�s asymptotically best
algorithm for factoring integers � the number �eld sieve �see ���
�� This algo�
rithm has �expected� running time Ln�

�

�
� � ��

�
����
 and was used in ���� for the

factorization of RSA���� ��
 and recently for the factorization of RSA���� ���

for example� The number �eld sieve can also be used to compute discrete log�
arithms in �nite �elds �see e�g� ���� ��
�� where the �expected� running time is
Lp�

�

�
� � ��

�
����
 as well� In contrast to this development there is still no L��

�

�
� c


algorithm known for the computation of discrete logarithms in arbitrary Cl����
The asymptotically best algorithm for this task still is an analogue of the mul�
tiple polynomial quadratic sieve ���
 with L��

�

�
� �
�

It is clear that this development alone would not justify the term �revival�
in the heading� In ���	 it was shown in ���
 that by using class groups Cl��p��
�p � ��p

�� of non�maximal orders one solves the problem that the class number
h��p� can not be determined and that one is able to implement an ElGamal�
type cryptosystem with comparably fast decryption� While the performance of
this scheme still was too bad to be used in practice this result may be considered
as the birthday of a new generation of cryptosystems based on quadratic orders�

Recently� a very ecient successor ���
 with quadratic decryption time was
proposed� This scheme was later on called NICE for New Ideal Coset Encryption�
First implementations show that the time for decryption is comparable to RSA



� encryption with e � ������ The central idea is to use an element g � ker�����
to mask the message in the ElGamal�type encryption scheme by multiplication
with gk for random k� Here ��� is the isomorphism introduced in ���
 which al�
lows to switch from the public non�maximal order to the secret maximal order�
Thus during the decryption step� which essentially consists of the computation
of ���� the mask gk simply disappears and the message is recovered� Note that
the computation of ��� is essentially one modular inversion with the Extended
Euclidean Algorithm which takes quadratic time� It is clear that this cryptosys�
tem is very well suited for applications in which a central server has to decrypt
a large number of ciphertext in a short time� For this scenario one may use the
recently developed NICE�batch�decryption method ���
� which even speeds up
the already very ecient decryption process by another ��� for a batch size of
��� messages� There was also proposed an ecient undeniable signature scheme
��
 based on the NICE�structure�

In ���	 there were also proposed �rst conventional signature schemes based
non�maximal imaginary quadratic orders� In ���
 there were proposed RSA� and
Rabin analogues� The corresponding encryption schemes have the major ad�
vantage that they are immune against low�exponent� and chosen�ciphertext at�
tacks� Moreover there was proposed a novel algorithm to compute square roots
in Cl��p� which replaces the fairly inecient Gaussian algorithm using ternary
quadratic forms� To avoid the computation of h����� where j��j should have
at least ��� bit to prevent the factorization of �p using ECM �see ��
 for a re�
cent �nding of a �� digit factor�� it was proposed to use totally non�maximal
imaginary quadratic orders� Note that the above cryptosystems are based on
completely factoring the non�fundamental discriminant �p or �pq in the case
of totally non�maximal orders respectively� While the utilization of totally non�
maximal orders for RSA�analogues is only interesting from a theoretical point
of view it is clear that this structure may well be used to set up DSA analogues�
While the discriminant �p � ��p

�� with �� � ���� and hence h��� � � for
example� can be chosen with about 	�� bits to obtain the same level of secu�
rity as for DSA in IF�p with p about ���� bits� Note that this comparison� i�e�
��� bit p for Cl��p� compared to ���� bit p for IF�p� is a rather pessimistic
one� Nevertheless this DSA analogue seemed to be too inecient to be used in
practice�

Very recently in ���
 however there was proposed an entirely new arithmetic
for these totally non�maximal orders� The central idea is to replace the fairly in�
ecient conventional ideal �arithmetic� i�e� multiplication and reduction of ideals�
by simple manipulations on the corresponding generator in the maximal order�
This means that instead of �multiple� applications of the comparably costly Ex�
tended Euclidean Algorithm one only has a few modular multiplications� This
strategy turns out to be thirteen times as fast and ends up with a DSA ana�
logue based on totally non�maximal orders� which running time for the signature
generation is roughly comparable to the conventional DSA in IF�p� Furthermore
there still seems to be much space for further improving this scheme�



However beside the possibility to speed up the DSA analogues� there is yet
another and even more important e�ect of the very recent result ���
�

It was precisely the way how one considers the arithmetic of ideals in
totally non�maximal orders there� which lead to the �previously conjec�
tured� constructive version of the reduction proof presented in Section �
of this work�

� Some background and notations concerning imaginary

quadratic orders

We �rst de�ne the function Ln�e� c
 which is used to describe the asymptotic
running time of subexponential algorithms� Let n� e� c � IR with � � e � � and
c � �� Then we de�ne

Ln�e� c
 � exp
�
c � �log jnj�e � �log log jnj���e� �

Thus the running time for subexponential algorithms is between polynomial time
�Ln��� c
� and exponential time �Ln��� c
��

Now we will give some basics concerning quadratic orders� The basic notions
of imaginary quadratic number �elds may be found in ��� ��
� For a more compre�
hensive treatment of the relationship between maximal and non�maximal orders
we refer to ���� ��
�

Let� � �� � mod � be a negative integer� which is not a square� The quadratic
order of discriminant � is de�ned to be

O� � ZZ � �ZZ�

where

� �

�q
�
�
� if � � � �mod ���

��
p
�

�
� if � � � �mod ���

���

The standard representation of some � � O� is � � x� y�� where x� y � ZZ�
If �� is squarefree� then O��

is the maximal order of the quadratic number
�eld Q�

p
��� and �� is called a fundamental discriminant� The non�maximal

order of conductor p � � with �non�fundamental� discriminant �p � ��p
� is de�

noted by O�p
� We will always assume in this work that the conductor p is prime�

Furthermore we will omit the subscripts to reference arbitrary �fundamental or
non�fundamental� discriminants� Because Q�

p
��� � Q�

p
�p� we also omit the

subscripts to reference the number �eld Q�
p
��� The standard representation of

an O��ideal is

a � q

�
aZZ �

b�
p
�

�
ZZ

�
� q�a� b�� ���

where q � Q��� a � ZZ��� c � �b�������a� � ZZ� gcd�a� b� c� � � and �a � b �
a� The norm of this ideal is N �a� � aq�� An ideal is called primitive if q � ��



A primitive ideal is called reduced if jbj � a � c and b � �� if a � c or jbj � a�
It can be shown� that the norm of a reduced ideal a satis�es N �a� � pj�j��
and conversely that if N �a� �pj�j�� then the primitive ideal a is reduced� We
denote the reduction operator in the maximal order by 	��� and write 	p�� for
the reduction operator in the non�maximal order of conductor p�

The group of invertible O��ideals is denoted by I�� Two ideals a� b are
equivalent� if there is a 
 � Q�

p
��� such that a � 
b� This equivalence relation

is denoted by a � b� The set of principal O��ideals� i�e� which are equivalent to
O�� is denoted by P�� The factor group I��P� is called the class group of O�

denoted by Cl���� Cl��� is a �nite abelian group with neutral element O�� In
every equivalence class there is one and only one reduced ideal� which represents
its class� Algorithms for the group operation �multiplication and reduction of
ideals� can be found in ���
� The order of the class group is called the class
number of O� and is denoted by h����

All cryptosystems from Section ��� make use of the relation between the
maximal and some non�maximal order� Any non�maximal order of conductor p
may be represented as O�p

� ZZ � pO��
� A special type of non�maximal order�

which is of central importance in this work� is given if h��� � �� In this case
O�p

is called a totally non�maximal imaginary quadratic order� An O��ideal a
is called prime to p� if gcd�N �a�� p� � �� It is well known� that all O�p

�ideals
prime to the conductor are invertible�

Denote by I�p
�p� �respectively� P�p

�p�� the O�p
�ideals prime to p �respec�

tively� the principal O�p
�ideals prime to p�� There is an isomorphism �See ����

Proposition �����page ���
�

I�p
�p�
�
P�p

�p� � I�p

�
P�p

� Cl��p�� ���

Thus we may �neglect� the ideals which are not prime to the conductor� if we
are only interested in the class group Cl��p�� There is an isomorphism between
the group of O�p

�ideals which are prime to p and the group of O��
�ideals� which

are prime to p� denoted by I��
�p� respectively�

Proposition �� Let O�p
be an order of conductor p in an imaginary quadratic

�eld Q�
p
�� with maximal order O��

�

�i�� If A � I��
�p�� then a � A � O�p

� I�p
�p� and N �A� � N �a��

�ii�� If a � I�p
�p�� then A � aO��

� I��
�p� and N �a� � N �A��

�iii�� The map � � A 	
 A � O�p
induces an isomorphism I��

�p�
�
I�p

�p��
The inverse of this map is ��� � a 	
 aO��

�

Proof� See ���� Proposition ����� page ���
 � �

Thus we are able to switch to and from the maximal order as applied in the
cryptosystems of Section ���� The algorithms GoToMaxOrder�a� p� to compute
��� and GoToNonMaxOrder�A� p� to compute � respectively may be found in
���
� Note� that the above map is de�ned on ideals themselves� rather than



equivalence classes� The class group Cl��p� of a non�maximal order can be
described as follows�

Proposition �� There is an isomorphism

Cl��p� � I��
�p�
�
P���ZZ �p�

�

where P���ZZ �p� denotes the subgroup of I��
�p� generated by the principal ideals

of the form �O��
where � � O��

satis�es � � a mod pO��
for some a � ZZ

such that gcd�a� p� � �� This isomorphism is induced by isomorphism � between
I��

�p� and I�p
�p��

Proof� See ���� Proposition �����page ���
 �

This interpretation of Cl��p� is called ring equivalence and will be used
in Section � to reduce the computation of discrete logarithms in totally non�
maximal imaginary quadratic orders to the computation of discrete logarithms
in �nite �elds�

De�nition �� Let �� � � and �� � �� � mod �� such that h���� � � and p
prime� Furthermore let g and a be reduced O�p

�ideals in standard�representation
���� which represent classes of the class group Cl��p� of the totally non�maximal
order� Then the discrete logarithm problem DLP in Cl��p� is given as follows�
Determine an a � ZZ such that ga � a� or show that no such a exists�

Furthermore the class number of a totally non�maximal order of conductor
p is given as follows�

Proposition �� Let �� � ��� �� � �� � mod � such that h���� � � and p
prime� Then h��p� � p� ���

p �� where ���

p � is the Kronecker�symbol�

Proof� This follows immediately from ���� Theorem ����� page ���
� �

Finally we will make use of the following interpretation of the ring �O��
�pO��

�
�
�

Proposition �� Let O��
be the maximal order and p be the prime conductor�

Then there is an isomorphism between

�O��
�pO��

�
� � IFp�X 


�
�f�X���

where �f�X�� is the ideal generated by f�X� � IFp�X 
 and

f�X� �

�
X� � ��

�
� if � � � �mod ���

X� �X � ����

�
� if � � � �mod ���

���

Proof� Let 	 � IFp be a root of f�X� � IFp�X 
� where f�X� is as given above�
Then an element � � IFp�X 
��f�X�� has a representation � � x � y	� where
x� y � IFp� On the other hand an element � � �O��

�pO��
�� has a representation

� � �x � �y�� where � given as in ��� and �x� �y � IFp� If we set x � �x mod p
and y � �y mod p we immediately have the desired bijective correspondence�
Furthermore it can be easily shown by straight forward calculation that this
bijective correspondence is indeed an isomorphism� �



Note that this isomorphism implicitly was used in ���
 to speed up the arith�
metic in totally�non�maximal orders�

� Reducing logarithms in totally non�maximal orders to

logarithms in �nite �elds

In this section we will show that the discrete logarithm problem in Cl��p� as
given in Di�nition � can be reduced to the discrete logarithm problem in �nite
�elds� More precisely we will show the following

Theorem �� The DLP in the class group Cl��p� of a totally non�maximal
order O�p

� where �p � ��p
� for prime p� can be reduced in �expected� O�log� p�

bit operations

	� to the DLP in IF�p� if ���

p � � �� or

�� to the DLP in IF�p if ���

p � � ��

To show the above result we will �rst consider the structure of the class group
Cl��p� of the totally non�maximal order� By the de�nition of a totally non�
maximal order� we know that the class number of the maximal order h���� � ��
This means that in O��

there are only principal ideals and hence I��
� P��

�
Recall from Proposition � that Cl��p� � I��

�p��P���ZZ�p�� where P���ZZ �p�
denotes the principal ideals �O��

of the form � � a mod pO��
� with a � ZZ

and gcd�a� p� � �� Thus in our case we obtain the following isomorphism�

Cl��p� � P��
�p�
�
P���ZZ�p�

�

Hence the group structure of the class group Cl��p� can be explained ex�
clusively by a relation of principal ideals in the maximal order O��

� With this
knowledge we are able to relate the ring �O��

�pO��
�� to our class group Cl��p��

Lemma �� The map �O��
�pO��

�� 
 P��
�p��P���ZZ�p�� where � � �O��

�pO��
��

maps to �O��
� P��

�p��P���ZZ�p�� is well�de�ned group homomorphism and
surjective�

Proof� This is shown in the more comprehensive proof of Theorem ���� in ���

�page ����� �

The �running time� to compute this map is trivially constant time� Note
that this map cannot be injective� just because there are �depending on ����p��
either p� � � or �p � ��� elements in �O��

�pO��
�� and by Proposition � only

p� ����p� � p� � elements in Cl��p�� It would be an isomorphism if we would
restrict it to appropriate subgroups of �O��

�pO��
��� The precise relation is

given in Lemma ��
In the next step we show that there is an isomorphism � between the ring

�O��
�pO��

�� and the multiplicative group of a �nite �eld of degree at most ��
which can be computed in �expected� O�log� p� bit operations�



Lemma �� We have to distinguish two cases�

	� If ���

p � � �� then there exists an isomorphism � � �O��
�pO��

�� 
 IF�p� �
which can be computed in constant time�

�� If ���

p � � � then there exits a surjective homomorphism � � �O��
�pO��

�� 

IF�p� which can be computed with �expected� O�log� p� bit operations�

Proof� From Proposition � we know that there is an isomorphism �O��
�pO��

��


 IFp�X 
��f�X��� where f�X� � IFp�X 
 is given as in ���� Now we need to
separate the two cases�

��� ���

p � � ��� In this case the polynomial f�X� is irreducible in IFp�X 


and therefore we have IFp�X 
��f�X�� � IFp� � Therefore we get the bijective map
� � �O��

�pO��
�� 
 IF�p� as follows� Let � � a � b� � �O��

�pO��
��� Then

���� � a � bX � IFp� � This map is trivially constant time� Furthermore it is
easy to show that this map is indeed an isomorphism�

��� ���

p � � �� In this case the polynomial f�X� is not irreducible� but can

be decomposed as f�X� � �X � 	��X � �	� � IFp�X 
 where 	 � IFp is a root of
f�X� and �	 is conjugate to 	� Thus if �� � � mod � and D � ���� we have
	 � IFp such that 	� � D mod p and �	 � �	� In the other case �� � � mod � we
have 	 � �� � b���� where b� � �� mod p and �	 � ��� b��� � IFp� Thus in our
case ����p� � � we have IFp�X 
��f�X�� � IFp�X 
��X � 	� � IFp�X 
��X � �	�� In
both cases ��� even or odd� we have to compute a square root in IFp to �nd 	
and �	� This takes random polynomial time using the algorithm of Cipolla� More
precisely we know from ��� Theorem ������ page ��	
 that this algorithm takes
�expected� time O�log� p�� In this case we have the map between � � a � b� �
�O��

�pO��
�� and ���� � a � b	 � IF�p� Finally one can easily show that this

map is indeed a surjective homomorphism� �

Now we only have one more minor problem� The DLP in De�nition � is
formulated for reduced ideals in the standard representation such that a � aZZ�
b�
p
��

�
ZZ in Cl��p�� We have to convert this standard representation in Cl��p�

to that in P��
�p��P���ZZ�p� using Proposition �� The following simple lemma

indicates that we can eciently switch to the desired generator�representation
�and back��

Lemma �� Let �� � � and �� � �� � mod � such that h���� � � and p prime�
Then

	� there is a deterministic algorithm which computes ideal �O��
� ����a� �

P��
�p� for a given reduced ideal a � Cl��p� prime to p in O�log� p� bit

operations and
�� there is a deterministic algorithm which computes reduced ideal a which is

equivalent to ���O��
� � Cl��p� for a given ideal �O��

� P��
�p��P���ZZ �p�

in O�log� p� bit operations�

Proof� Note that algorithm � and ��� can be computed in O�log� p� bit op�

erations ���
� We denote by a � aZZ �
b�
p
�q

�
ZZ a reduced ideal in Cl��p��



From Proposition � all reduced ideals a � Cl��p� prime to p are of the form
a � ���O��

� for some � � O��
� We can �nd the generator � by reducing

����a�� Let A � ����a� � AZZ � B�
p
��

�
ZZ� From ��
 one can reduce a ideal

A of O��
and �nd an element 
 such that Red�A� � 
A in O��logA��� bit op�

erations� where Red�A� is the reduced ideal equivalent to A� The norm of ideal
a � Cl��p� is a� Because a is reduced we have a �

pj�pj�� and a � O�p�� Note
that the norm a of ideals does not change while switching the orders by map
�� thus A � a holds� Therefore one can compute the generator �O��

� ����a�
in O�log� p� bit operations� On the contrary� let A be the standard representa�
tion of ideal �O��

� P��
�p��P���ZZ�p�� From ���
� one can compute ideal A in

O��log���
�� bit operations� Then to compute the reduced ideal equivalent to

��A� in Cl��p� requires map � and one reduction algorithm and they are in
O�log� p� bit operations� This shows the assertion� �

Thus we are now able to put together our auxilliary lemma to prove the main
result of this work�

Proof �Proof of Theorem 	�� If one is given g� a as given in De�nition � to
compute the discrete logarithm in the class group Cl��p� then one can compute
the corresponding generators 
� � � O��

such that 
O��
� ����g�� �O��

�
����a� by Lemma � and Lemma �� Using the isomorphism � from Lemma �
one can compute the corresponding elements a � ���� and g � ��
� in the
�nite �eld IF�p �if ����p� � �� or IF�p� �if ����p� � ��� respectively� Then one
is able to compute the discrete logarithm there or determine that it does not
exist� It is clear that the entire reduction does only take �expected� O�log� p� bit
operations� �

� Conclusion

In this work we have shown that the discrete logarithm problem in the class group
Cl��p� of a totally non�maximal imaginary quadratic order can be reduced to
the discrete logarithm problem in �nite �elds using �expected� O�log� p� bit�
operations� This result clearly implies that the formerly proposed bitlength of
	�� for�p does not provide sucient security� because one could simply compute
discrete logarithms in IF�pk � where k � f�� �g which should be possible in the near
future if p  ����� The algorithm which is used there is the number �eld sieve
with L� �

�

� This would imply that p �at least in the case that ����p� � �� should

be about ���� bit to yield �expected� long term security� Hence cryptosystems
based on totally non�maximal imaginary quadratic orders seem to lose much of
their attractiveness�

Analogous to the situation for Elliptic Curves� where the DLP in supersin�
gular curves can eciently be solved in �nite �elds with small extension de�
gree� we discovered that there is also a weak class for class groups of imaginary
quadratic orders� It remains an open question whether it is possible to �nd an
L� �

�

 algorithm to compute discrete logarithms in arbitrary class groups� Another



interesting question is whether these results have any relevance to the elliptic
curves discrete logarithm problem for elliptic curves whose endomorphism ring
is a totally non�maximal order� These issues will be subject of further research�
To avoid miss�interpretation of this result it should be noted that non�maximal
orders like applied in ���� ��
� where the factorization of �p is kept secret� are
not e
ected by this result�
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