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Abstract� In 
��� there is proposed an ElGamal�type cryptosystem based
on non�maximal imaginary quadratic orders with trapdoor decryption	
The trapdoor information is the factorization of the non�fundamental
discriminant �p  ��p

�	 The NICE�cryptosystem �New Ideal Coset
En�cryption� 
��� ��� is an e�cient variant thereof� which uses an ele�
ment gk � Ker����

Cl � � Cl��p�� where k is random and ���

Cl � Cl��p��
Cl���� is a map between the class groups of the non�maximal and max�
imal order� to mask the message in the ElGamal cryptosystem	 This
mask simply �disappears� during decryption� which essentially consists
of computing ���

Cl 	 Thus NICE features quadratic decryption time and
hence is very well suited for applications in which a central server has
to decrypt a large number of ciphertexts in a short time	 In this work
we will introduce an e�cient batch decryption method for NICE� which
allows to speed up the decryption by about ��� for a batch size of ���
messages	

In 
��� there is proposed a NICE�Schnorr�type signature scheme	 In this
scheme one uses the group Ker����

Cl � instead of IF�p	 Thus instead of
modular arithmetic one would need to apply standard ideal arithmetic
�multiply and reduce� using algorithms from 
�� for example	 Because
every group operation needs the application of the Extended Euclidean
Algorithm the implementation would be very ine�cient	 Especially the
signing process� which would typically be performed on a smartcard with
limited computational power would be too slow to allow practical appli�
cation	 In this work we will introduce an entirely new arithmetic for
elements in Ker����

Cl �� which uses the generator and ring�equivalence for
exponentiation	 Thus the signer essentially performs the exponentiation
in �O��

�pO��
��� which turns out to be about twenty times as fast as

conventional ideal arithmetic	 Furthermore in 
��� it is shown� how one
can further speed up this exponentiation by application of the Chinese
Remainder Theorem for �O��

�pO��
��	 With this arithmetic the signa�

ture generation is about forty times as fast as with conventional ideal
arithmetic and more than twice as fast as in the original Schnorr scheme

���	



� Introduction

The utilization of imaginary quadratic class groups in cryptography is due to
Buchmann and Williams ���� who proposed a key agreement protocol analogue
to ��� based on class groups of imaginary quadratic �elds� i�e� the class group
of the maximal order� Since the computation of discrete logarithms in the class
group of the imaginary quadratic number �eld is at least as di�cult as factoring
the corresponding discriminant 	see ��� 
��� these cryptosystems are very inter�
esting from a theoretical point of view� In practice however these cryptosystems
seemed to be less e�cient than popular cryptosystems based on computing dis�
crete logarithms in IF�p� like ��� � or factoring integers� like �
��� Furthermore the
computation of the group order� i�e� the class number� is in general almost as
hard as computing discrete logarithms itself by application of the algorithm of
Hafner � McCurley ���� or more practical variants like ��� ��� which is subexpo�
nential with L� �

�
�� Hence it seemed to be impossible to set up signature schemes

analogue to �� 

� or �
��� In ���� however it was shown how the application of
non�maximal imaginary quadratic orders may be used to construct an ElGamal�
type cryptosystem with fast decryption and that it is in principle possible to set
up ElGamal and RSA�type signature schemes�

In �
�� there is proposed an ElGamal�type cryptosystem� later on called NICE
for New Ideal Coset Encryption ��
�� with very fast decryption� It was shown
that the decryption process only needs quadratic time� which makes NICE unique
in this sense� First implementations show that the time for decryption is com�
parable to the time for RSA�encryption with e � 
��� The central idea of this
scheme is to use an element gk of the kernel Ker	���Cl � of the surjective map
���Cl � Cl	�p� � Cl	��� to mask the message in the ElGamal�type cryptosys�
tem ����� The map ���Cl is induced by the isomorphic map �

�� � I�p
	p�� I��

	p�
which maps O�p

�ideals which are prime to the conductor p to O��
�ideals which

are also prime to p� Hence this mask simply �disappears� during the trapdoor�
decryption� which just consists of applying ���Cl � reducing the resulting ideal in
the maximal order 	and possibly going back to the non�maximal order using ���
The most time consuming step in the decryption is to compute the map ���Cl �
which is essentially the computation of a modular inverse 	modulo p� using the
Extended Euclidean Algorithm� which needs O	log�	p�� bit operations�

It is clear that because of this feature NICE is very well suited for applications
where a central server has to decrypt a large number of ciphertexts in a short
time� Thus it is natural to search for an e�cient batch decryption method� In
Section � we will introduce a simple yet e�cient method for batch decryption�
which speeds up the system in this scenario even further� The timings in Section
� show that it is possible to speed up the decryption process for ��� messages
by about ����

While the main application of the novel arithmetic for Ker	���Cl � to be intro�
duced in Section � might be in the signing procedure of the NICE�Schnorr�type
signature scheme ����� its development was actually motivated by cryptosystems
based on totally non�maximal orders� Due to the very recent result ���� how�



ever� which reduces the DL�problem in these totally non�maximal orders to the
DL�problem in �nite �elds� these cryptosystems seem to have lost much of its
attractiveness�

In ���� it was proposed to use totally non�maximal imaginary quadratic orders
O�pq

� where �pq � ��p
�q� to set up RSA�type cryptosystems� Because one

chooses �� such that h	��� � � it is easy to compute h	�pq� � 	p�	���p��	q�
	���q��� It is clear that a similar strategy may be used to set up DSA analogues
based on totally non�maximal imaginary quadratic orders� First implementations
however have shown that these cryptosystems using standard ideal arithmetic
are far to ine�cient to be used in practice ����� This lack of e�ciency was the
motivation for developing a more e�cient arithmetic for Cl	�p�� or Ker	�

��
Cl �

which is the same in the case of totally non�maximal orders�

In Section � we will introduce this entirely new method for e�cient exponen�
tiation of elements in Ker	���Cl �� Instead of using the standard ideal arithmetic
	multiplication and reduction of ideals� in the non�maximal order we multiply
and �reduce� the corresponding generators in the maximal order and later on
lift the resulting principal ideal� which corresponds to the computed genera�
tor� to the non�maximal order� Thus one essentially reduces the arithmetic in
Ker	���Cl � � Cl	�p� to arithmetic in 	O��

�pO��
�� which turns out to be much

more e�cient�

The timings in Section � show that the naive variant of the new exponentia�
tion technique� as proposed here� is already about twenty times as fast as classical
ideal arithmetic� Very recently it was shown in ���� that one can even do twice as
good by utilizing the Chinese Remainder Theorem for 	O��

�pO��
��� With this

improvement the signature generation of the proposed NICE�Schnorr�variant is
more than twice as e�cient as in the original Schnorr�scheme �
���

This paper is organized as follows� In Section 
 we will provide the necessary
basics of imaginary quadratic orders�We will concentrate on the relation between
the maximal and non�maximal orders and explain the structure of Ker	���Cl �� In
Section � we will brie�y recall the NICE cryptosystem� In Section � we will
introduce the new batch decryption for NICE and compare the running times of
the implementation� The new exponentiation methods for elements in Ker	���Cl �
are explained in Section �� We will give the initially proposed method in Section
��� and outline the even more e�cient CRT � variant from ���� in Section ��
� In
Section ��� we will also provide a timing comparison between the new methods�
conventional ideal� and modular arithmetic�

� Imaginary quadratic orders

The basic notions of imaginary quadratic number �elds may be found in ��� ���
or ���� For a more comprehensive treatment of the relationship between maximal
and non�maximal orders we refer to ��� or �����



Let � � �� � 	mod �� be a negative integer� which is not a square� The
quadratic order of discriminant � is de�ned to be

O� � ZZ � �ZZ�

where

� �

�q
�
�
� if � � � 	mod ���

��
p
�

�
� if � � � 	mod ���

	��

The standard representation of some � � O� is � � x� y�� where x� y � ZZ�

If �� is squarefree� then O��
is the maximal order of the quadratic number

�eld Q	
p
��� and �� is called a fundamental discriminant� The non�maximal

order of conductor f � � with 	non�fundamental� discriminant �f � ��f
� is

denoted by O�f
� In this work we will omit the subscripts to reference arbitrary

	fundamental or non�fundamental� discriminants� Because Q	
p
��� � Q	

p
�f �

we also omit the subscripts to reference the number �eld Q	
p
��� The standard

representation of an O��ideal is

a � q

�
ZZ �

b�
p
�


a
ZZ

�
� 	a� b�� 	
�

where q � Q��� a � ZZ��� c � 	b�����	�a� � ZZ� gcd	a� b� c� � � and �a 	 b �
a� The norm of this ideal is N 	a� � aq�� An ideal is called primitive if q � �� A
primitive ideal is called reduced if jbj � a � c and b � �� if a � c or jbj � a� It
can be shown� that the norm of a reduced ideal a satis�es N 	a� �pj�j�� and

conversely that if N 	a� � pj�j�� then the ideal a is reduced� We denote the
reduction operator in the maximal order by 
�	� and write 
f 	� for the reduction
operator in the non�maximal order of conductor f �

The group of invertible O��ideals is denoted by I�� Two ideals a� b are
equivalent� if there is a � � Q	

p
��� such that a � �b� This equivalence relation

is denoted by a � b� The set of principal O��ideals� i�e� which are equivalent
to O�� are denoted by P�� The factor group I��P� is called the class group of
O� denoted by Cl	��� Cl	�� is a �nite abelian group with neutral element O��
Algorithms for the group operation 	multiplication and reduction of ideals� can
be found in ���� The order of the class group is called the class number of O�

and is denoted by h	���

Our cryptosystems make use of the relation between the maximal and non�
maximal orders� Any non�maximal order may be represented as O�f

� ZZ �
fO��

� If h	�� � � then O�f
is called a totally non�maximal imaginary quadratic

order of conductor f � An O��ideal a is called prime to f � if gcd	N 	a�� f� � ��
It is well known� that all O�f

�ideals prime to the conductor are invertible� In
every class there is an ideal which is prime to any given number� The algorithm
FindIdealPrimeTo in ���� will compute such an ideal� If we denote the 	principal�
O�f

�ideals� which are prime to f by P�f
	f� and I�f

	f� respectively then there



is an isomorphism

I�f
	f�
�
P�f

	f� � I�f

�
P�f

� Cl	�f �� 	��

Thus we may �neglect� the ideals which are not prime to the conductor� if we are
only interested in the class group Cl	�f �� There is an isomorphism between the
group of O�f

�ideals which are prime to f and the group of O��
�ideals� which

are prime to f � denoted by I��
	f� respectively�

Proposition �� Let O�f
be an order of conductor f in an imaginary quadratic

�eld Q	
p
�� with maximal order O��

�

	i�� If A � I��
	f�� then a � A 	 O�f

� I�f
	f� and N 	A� � N 	a��

	ii�� If a � I�f
	f�� then A � aO��

� I��
	f� and N 	a� � N 	A��

	iii�� The map � � A 
� A 	 O�f
induces an isomorphism I��

	f�
��I�f

	f��
The inverse of this map is ��� � a 
� aO��

�

Proof � See ��� Proposition ��
�� page ���� � �

Thus we are able to switch to and from the maximal order� The algorithms
GoToMaxOrder	a� f� to compute ��� and GoToNonMaxOrder	A� f� to compute
� respectively may be found in �����

It is important to note that the isomorphism � is between the ideal groups
I��

	f� and I�f
	f� and not the class groups�

If� for A�B � I��
	f� we have A � B� it is not necessarily true that �	A� �

�	B��

On the other hand� equivalence does hold under ���� More precisely we have
the following�

Proposition �� The isomorphism ��� induces a surjective homomorphism ���Cl �
Cl	�f �� Cl	���� where a 
� 
�	�

��	a���

Proof� This immediately follows from the short exact sequence�

Cl	�f � �� Cl	��� �� �

	see �
�� Theorem �
�� p� �
��� �

In the following we will study the kernel Ker	���Cl � of the above map ���Cl
and hence the relation between a class in the maximal order and the associated
classes in the non�maximal order in more detail� We start with yet another
interpretation of the class group Cl	�f ��

Proposition �� Let O�f
be an order of conductor f in a quadratic �eld� Then

there are natural isomorphisms

Cl	�f � � I�f
	f�
�
P�f

	f� � I��
	f�
�
P
���ZZ	f�

�



where P
���ZZ	f� denotes the subgroup of I��

	f� generated by the principal ideals

of the form �O��
where � � O��

satis�es � � a 	mod fO��
� for some a � ZZ

such that gcd	a� f� � ��

Proof� See ��� Proposition ��

� page ����� �

The following corollary is an immediate consequence�

Corollary �� With notations as above we have the following isomorphism

Ker	���Cl � � P��
	f�
�
P
���ZZ 	f�

�

The next result explains the relation between Ker	���Cl � and 	O��
�fO��

���

Lemma �� The map 	O��
�fO��

�� � Ker	���Cl �� where � 
� � 	�O��
� is a

surjective homomorphism�

Proof� This is shown in the more comprehensive proof of Theorem ��
� in ���
	page ����� �

Another immediate consequence of Proposition � allows to decide which prin�
cipal ideals in the maximal order are mapped to principal ideals in the non�
maximal order by applying ��

Corollary �� Let � � O��
be an element of the maximal order and O�f

be the
order of conductor f � Then � 	�O��

� � O�f
if and only if

� � a 	mod fO��
�

with a � ZZ such that gcd	a� f� � �

Thus we are able to �model� the equivalence relation in the non�maximal
order by considering generators of principal ideals in the maximal orders� This
fact is called ring�equivalence�

In Section � we will use the above results to formulate concrete algorithms
for e�cient exponentiation of elements in Ker	���Cl ��

Finally� we will give the exact relationship between the class numbers h	���
and h	�f ��

Theorem �� Let O�f
be the order of conductor f in a quadratic �eld Q	

p
��

with maximal order O��
� Then

h	�f � �
h	���f

�O�
��

� O�
�f

�

Y
pjf

�
���

�
��

p

�
p

�
A � nh	����

where n � IN and
�
��

p

�
is the Kronecker�symbol�



Proof� See ��� Theorem ��
�� page ����� �

Because O�
��

� O�
�p

� f��g� for �p � ��p
�� p prime and �� 	 �� we have

an immediate corollary of Theorem ��

Corollary 	� Let �� 	 ��� �� � �� � 	mod �� and p prime� Then h	�p� �

h	���
�
p�

�
��

p

��
and

		Ker	���Cl �		 � �p� ���

p

��
� where

�
��

p

�
is the Kronecker�

symbol�

Thus we are able to control the order of the kernel and consequently set up
a Schnorr analogue using the group Ker	���Cl � instead of IF�p as proposed in �����

� The NICE cryptosystem

In this section we will brie�y recall the setup of NICE� We refer to �
�� �
� ���
for a more comprehensive treatment�

Choose two primes p� q� p � 

p
q and set �� � �q if q � � 	mod ���

�� � ��q otherwise and �p � ��p
�� Then O��

is a maximal order and O�p
is a

non�maximal order of conductor p� Note that by ���� Lemma �� all reduced O��
�

ideals are guaranteed to be prime to p� because p �
pj��j� Furthermore choose

a reduced O�p
�ideal g � Ker	���Cl �� In ���� there is given a simple algorithm

which computes such a kernel element g�

The secret key is just


 the conductor p�

The public key consists of


 the non�fundamental discriminant �p and

 the ideal g�

Because the system is entirely broken if one is able to factor �p one should�
as explained in ����� at least choose p� q � 
����

To encrypt a message � � m 	
pj��j�� one proceeds as follows�

�� Choose a random k � ZZ with � 	 k 	 
���

� Compute the reduced O�p

�ideal k � 
p	g
k��

�� Embed the message m � ZZ in a O�p
�Ideal m with N 	m� 	

pj��j���
�� Compute the ciphertext c � 
p	mk��

For the message embedding one may use the algorithm given in ����� It is
clear that the ideal k is simply used to �mask� the message in the ElGamal�type
scheme� Furthermore note that k 	 
�� can be chosen to be �unusually small��
because in contrast to the classical ElGamal cryptosystem the ciphertext consists



of just one element and hence one would have to apply a brute force strategy to
determine the message� It is just not possible to compute some discrete logarithm
using more sophisticated e�g� 	baby�step�giant�step� techniques if one is only
given the cipher text� We refer to ���� for a detailed treatment of this issue�

To decrypt the ciphertext c one proceeds as follows�

�� Compute C � ���	c� using algorithm GotoMaxorder	c� p� from �����

� Reduce C� i�e� compute M � 
�	C��
�� Compute m � �	M� using algorithm GotoNonMaxorder	M� p� from �����

Note that the computation in Step ���
� is just the computation of ���Cl �

The correctness of the decryption procedure is easy to see� Because g �
Ker	���Cl � we have ���	c� � ���	mk� � ���	m�	��O��

� M	��O��
� M�

where � � O��
�

Because N 	m� 	
pj��j�� we know that m � �	M� � �	
�	C�� is a reduced

O�p
�ideal � the message�ideal m�

Note that if the message is embedded in the norm of the ideal m only� as
proposed in ����� then the step back to the non�maximal order 	Step ��� may be
omitted� because we have N 	m� � N 	M��

For the readers convenience we will recall the algorithm GotoMaxOrder from
�����

Algorithm �� �GoToMaxOrder�

Input� A primitive O�p
�ideal a � 	a� b�� the fundamental discriminant ��

and the conductor p

Output� A primitive O��
�ideal A � ���	a� � aO��

�� bO � �� 	mod 
�

� Solve � � �p� a for ��  � ZZ
�� B � b�� abO 	mod 
a�
�� RETURN 	a�B�

� E�cient batch decryption for NICE

It is clear that because of its very fast decryption NICE is very well suited for
applications in which a central server has to decrypt a large number of cipher�
texts in a short time� Thus it is desireable to have an e�cient batch decryption
procedure at hand� In the following we will introduce a simple method which
decrypts n ciphertexts ci� � � i � n in one step� which turns out to be much
faster than the sequential processing�

If we have a closer look at the decryption procedure above we recognize that
the most time consuming operation is the computation of GotoMaxOrder� This



step is essentially the computation of a modular inverse modulo the conductor�
Thus we can speed up the decryption process by applying a batch�gcd�strategy�
like proposed in �
���� The central idea is to replace all but one costly inversions
with the Extended Euclidean Algorithm by a few modular multiplications�

If one is asked to compute b� � a��
�

	mod p� and b� � a��
�

	mod p�� Then
instead of performing two inversions one can compute a � a�a� 	mod p�� b �
a�� 	mod p�� b� � ba� 	mod p� and b� � ba� 	mod p�� Thus one replaces
one inversion by three modular multiplications� which are usually faster� because
in most implementations one inversion is �about� �� modular multiplications�

It is an easy matter to generalize this strategy to n inversions� This immedi�
ately leads to the following algorithm for batch decryption� where we assume that
the message is entirely encoded in the norm of the message�ideal� like proposed
in �����

Algorithm ��� �NICE�Batch�Decryption�

Input� n ciphertexts� i�e� reduced O�p
�ideals ci � 	ai� bi�� � � i � n� the

fundamental discriminant �� and the conductor p�

Output� The n corresponding plaintexts� i�e� the norms Ai of the corre�
sponding ideals Mi � 	Ai� Bi�� for � � i � n�

�� bO � �� 	mod 
�

� g� � �
�� g� � a�
�� FOR i FROM 
 TO n DO gi � gi��ai 	mod p�
�� Compute hn � g��n 	mod p�
�� FOR i FROM n TO � DO

��� i � higi�� 	mod p�
��
 hi�� � hiai 	mod p�
��� �i � ���iai

p

��� Bi � bi�i � aibOi 	mod 
ai�
��� Mi � 	Ai� Bi�� 
�	ai� Bi�

�� RETURN n plaintexts Ai� � � i � n

Thus instead of n inversions with the Extended Euclidean Algorithm we
only have to perform one inversion� �n � � modular multiplications� n integer
multiplications and n integer divisions� Thus in typical implementations we are
able to reduce the time for n decryptions� as shown in Table � below�

The implementation was done using the LiDIA�package �
�� on a Pentium ���
MHz choosing random primes p� q of the respective bit�length� The timings are
given in microseconds� averaged over a number of ��� randomly chosen messages�
The �rst row shows how many modular multiplications are as costly as one
inversion in LiDIA� The next rows give the time for a NICE�encryption using

� The author would like to thank V	 M�uller for pointing out the reference	



��bit exponents and the binary� usual BGMW�� and the signed BGMW�method
�
� for exponentiation� This includes the time for the message�embedding� The
last four rows give the decryption time 	per message� for batch sizes of �� �� ��
and ��� messages respectively� This shows that for a batch size of ��� we are
able to speed up the decryption by about ����

bitlength p� q ��� ��� ��� ���

mult � inv ��	� ��	� ��	� ��	�

ms � ms � ms � ms �

NICE Enc	 �binary� ����	� ��� ����	� ��� ����	� ��� �����	� ���
NICE Enc	 �BGMW� ���	� ��	�� ����	� ��	�� ����	� ��	�� ����	� ��	��
NICE Enc	 ���BGMW� ���	� ��	�� ����	� ��	�� ����	� ��	�� ����	� ��	��

NICE Dec	 �� mess	� �	�� ��� ��	�� ��� ��	�� ��� ��	�� ���
NICE Dec	 �� mess	� �	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	��
NICE Dec	 ��� mess	� �	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	��
NICE Dec	 ���� mess	� �	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	�� ��	��

Table �� Timings for NICE with sequential and batch decryption

� E�cient exponentiation for elements of Ker����Cl �

In this section we will introduce a novel arithmetic for classes in Ker	���Cl � which
turns out to be much more e�cient than standard ideal arithmetic�

Since we need to apply � during our computation we will only consider
ideals a which are prime to the conductor f � Thus if we are considering principal
	integral� ideals �O��

� for some � � O��
� then we require gcd	N	��� f� � ��

We start with providing the details of a naive generator arithmetic in Section
���� While an exponentiation of an ideal using this arithmetic turns out to be
about twenty times 	for the Schnorr�scheme and thirteen times for the DSA�
scheme in totally non�maximal orders� as fast as conventional ideal arithmetic�
we can do even twice as good by applying CRT in 	O��

�fO��
�� as proposed

in ����� For the readers convenience this method is brie�y outlined in Section
��
� With this arithmetic the signature generation in the Schnorr�analogue ����
is more than twice as fast as in the original scheme�

��� Arithmetic in Ker���
Cl
� using O��

�fO��
��

While we already know from Lemma � that the arithmetic in Ker	���Cl � can be
reduced to the arithmetic in 	O��

�fO��
��� we will give a very elementary proof

here� which ends up in a �ready to implement� algorithm�



It is clear that all integral ideals a � Ker	���Cl � � Cl	�f � are of the form

a � �	�O��
�� 	��

for some � � O��
�

Now instead of multiplying and reducing the ideals in the non�maximal order
we will work with the generators which are corresponding to principal ideals in
the maximal order�

We will start with a simple lemma� which can easily be veri�ed by straight�
forward calculation�

Lemma ��� Let �i � xi � yi� � O��
� xi� yi � ZZ� i � f�� 
g and � like given

in 	��� Then � � x� y� � ���� is given by

x � x�x� � y�y�
��

�
	��

y � x�y� � x�y� 	��

in the case that �� � � 	mod �� and

x � x�x� � y�y�
�� � �

�
	��

y � x�y� � x�y� � y�y� 	��

if �� � � 	mod ���

Thus multiplying two generators �i is more e�cient than multiplying the
two ideals �iO��

� because no application of the costly Extended Euclidean Al�
gorithm is necessary�

It is clear however that we �somehow need to reduce� intermediate results
during exponentiation to obtain a polynomial time algorithm� The central idea
is to �model� reduction of ideals 	in the non�maximal order� by manipulating
the generator� This task will turn out to be surprisingly simple�

The following lemma is immediate�

Lemma ��� Let � � x� y�� �� � x� � y�� � O��
and f � ZZ��� Then � � ��

	mod fO��
� if and only if x� � x 	mod f� and y� � y 	mod f��

Next we will consider the norm of an element � � O��
under this congruence�

Lemma ��� Let �� � � O��
and f � ZZ��� If � � � 	mod fO��

� then
N 	�� � N 	�� 	mod f��

Proof� Let � � x� y�� Then by Lemma �
 above we have � � x� � y��� where
x� � x 	mod f� and y� � y 	mod f��



Then we have

N 	�� � x� � y���

� x�� � y���� 	mod f�

� N 	���

�

The following corollary is immediate�

Corollary ��� Let �� � � O��
� f � ZZ�� and � � � 	mod fO��

�� gcd	N 	��� f� �
� if and only if gcd	N 	��� f� � ��

Lemma ��� Let �� � � O��
such that gcd	N 	��� f� � gcd	N 	��� f� � � and

� as de�ned in Proposition �� Furthermore let � � �� 	mod fO��
�� Then

gcd	N 	��� f� � � and if � � � 	mod fO��
� then �	�O��

� � �	�O��
� in

Cl	�f ��

Proof� That gcd	N 	��� f� � � is immediate by the multiplicativity of the norm
and Corollary ���

Because � � � 	mod fO��
� it follows� that � � �� for some � � Q	

p
���

where � � � 	mod fO��
�� Thus by Proposition � we know that �	�O��

� �
O�f

and hence the assertion follows� �

Furthermore we need the following result� which is immediate because � is
an isomorphism�

Lemma ��� Let � � O��
� such that gcd	N 	��� f� � �� n � ZZ and � as de�ned

in Proposition �� Then we have �	�O��
�n � �	�nO��

��

By combining the above results we immediately obtain the following�

Lemma ��� Let � � O��
� such that gcd	N 	��� f� � �� n � ZZ and � as

de�ned in Proposition �� Then we have �	�O��
�n � �	�O��

� for some � � �n

	mod fO��
��

The following lemma follows immediately from 	���	�� and Lemma �
�

Lemma �	� Let �i � xi�yi� � O��
� xi� yi � ZZ� i � f�� 
g� � like given in ���

and f � �� Then � � x� y� � ���� 	mod fO��
� is given by

x � x�x� � y�y�
��

�
	mod f� 	�

y � x�y� � x�y� 	mod f� 	���

in the case that �� � � 	mod �� and

x � x�x� � y�y�
�� � �

�
	mod f� 	���

y � x�y� � x�y� � y�y� 	mod f� 	�
�

if �� � � 	mod ���



This result enables us to �model� the conventional ideal arithmetic 	mul�
tiplication and reduction� by simple calculations modulo f � This leads to the
following algorithm for exponentiation� which is based on binary method for
exponentiation� We denote the binary length of n by 	n� � blog�	n�c� ��

Algorithm ��� �Gen�Exp�

Input� � � x� y� � O��
� the conductor f such that gcd	N 	��� f� � � and

the exponent n � ZZ�

Output� a � 	a� b� � 
f 	�		�O��
�n���

�� IF n � � THEN OUTPUT	�� �� 	mod 
��

� IF n 	 � THEN n� �n� y � �y
�� l � 	n�� �� 	nl � � � n��� � binary expansion of n� i�e� nl � �
�� xh � x 	mod f�
�� yh � y 	mod f�
�� IF �� � � 	mod �� THEN D � ���� ELSE D � 	�� � ����
�� FOR i � l � � DOWNTO � DO

��� h� xh
��
 xh � h� � y�hD 	mod f�
��� IF �� � � 	mod �� THEN yh � 
hyh 	mod f� ELSE yh � 
hyh�y

�
h

	mod f�
��� IF ni � � THEN
����� h� xh
����
 xh � hx� yhyD 	mod f�
����� IF �� � � 	mod �� THEN yh � hy � xyh 	mod f�

ELSE yh � hy � xyh � yhy 	mod f�
�� �� Compute the standard representation A � d	a� b� � �hO��

��

��� �� Use x�y
p
��

�
�form ��

xh � 
xh
IF �� � � 	mod �� THEN xh � xh � yh

��
 Compute d � gcd	yh� 	xh � yh����
� � yh � �	xh � yh����
� for
� � � ZZ

��� A� jx�h ���y
�
hj�	�d��

��� B � 	xh � �	xh � yh����
��d 	mod 
A�
� �� Lift A� � 	��d�A to the non�maximal order and reduce it ��

b� Bf 	mod 
A�
	a� b�� 
f 	A� b�

��� OUTPUT�a� b�

Proof� By Lemma �� we only have to compute � � �n 	mod fO��
�� The

correctness of the exponentiation algorithm is immediate because it is the well
known binary method with the operation given in Lemma �� as group operation�

In step � we simply compute the standard representation of the ideal A �
�hO��

� d	aZZ�	b�
p
����
ZZ�� By Corollary �� we know that N 	�hO��

� �
ad� is prime to f � This clearly implies that gcd	d� f� � �� Because A � 	d�A�



for d � ZZ� A� � aZZ � 	b �
p
����
ZZ we know from Proposition � that

�	A� � �	A��� Finally it is clear that we can apply � from Proposition �� because
gcd	a� f� � � �

��� Even more e�cient arithmetic in Ker���
Cl
� using CRT in

O��
�pO��

��

In the previous section we saw that the arithmetic in Ker	���Cl � can be reduced
to arithmetic in 	O��

�fO��
��� which turns out to be much more e�cient� In

this section we outline yet another method for a further speed up� We refer to
���� ��� for the details�

We will only concentrate on a special case which seems to be most important
for practical application� as it is used in the Schnorr�analogue from ����� That is

we assume that the conductor is a prime p� where
�
��

p

�
� ��

Lemma ��� Let O��
be the maximal order and p be prime� Then there is an

isomorphism

	O��
�pO��

�� � IFp�X �
�
	f	X���

where 	f	X�� is the ideal generated by f	X� � IFp�X � and

f	X� �



X� � ��

�
� if �� � � 	mod ���

X� �X � ����

�
� if �� � � 	mod ���

	���

Proof� See ���� Proposition ��� �

Theorem ��� Assume that
�
��

p

�
� � and the roots 
� �
 � �IFp of f	X� � IFp�X �

as given in 	��� are known� Then the following isomorphism can be computed
in time O		log p����

	O��
�pO��

�� � IF�p  IF�p

Proof� From Lemma 
� we know that there is an isomorphic map 	O��
�pO��

��

� IFp�X ��	f	X��� where f	X� � IFp�X � is given in 	���� And that this isomor�
phism is trivial to compute�

Because
�
��

p

�
� � the polynomial f	X� is not irreducible� but can be de�

composed as f	X� � 	X � 
�	X � �
� � IFp�X � where 
� �
 � IFp are the roots
of f	X�� Thus if �� � � 	mod �� and D � ���� we have 
 � IFp such that

� � D 	mod p� and �
 � �
� In the other case �� � � 	mod �� we have

 � 	� � b��
� where b� � �� 	mod p� and �
 � 	�� b��
 � IFp� Thus we have
the isomorphisms

	O��
�pO��

�� �
�
IFp�X �

�
	X � 
�

��

�
IFp�X �

�
	X � �
�

��
� IF�p  IF�p�



Let � � a � b� � 	O��
�pO��

�� then the mapping � � 	O��
�pO��

�� �
IF�p  IF�p is given as x� � ��	�� � a� b
 � IF�p and x� � ��	�� � a� b�
 � IF�p�
The inverse map ��� is computed by solving the small system of linear equations�
I�e� one will recover a� b � IF�p by computing b � x��x�

���� and a � x� � b
� Thus

both transformations � and ��� need time O		log p���� �

With this result we immediately obtain the of the following algorithm�

Algorithm ��� �Gen�CRT�

Input� � � x � y� � O��
� the conductor p� such that gcd	N 	��� p� � ���

��

p

�
� �� the roots 
� �
 � IF�p of f	X� as given in ��	� and the exponent n � ZZ�

Output� a � 	a� b� � 
p	�		�O��
�n���

�� IF n � � THEN OUTPUT	�� �� 	mod 
��

� IF n 	 � THEN n� �n� y � �y
�� x� � 	x� 
y�

n
	mod p�

�� x� � 	x� �
y�
n

	mod p�
�� r � 	�
� 
��� 	mod p�
�� yh � 	x� � x��r 	mod p�
�� xh � x� � yh
 	mod p�
�� Compute standard representation� lift and reduce as in Algorithm �
 Step

���
�
� OUTPUT�a� b�

Note that the computation of r in Step � can be done in a precomputation
phase� as is it independent of the current ��

��� Timings for di�erent arithmetics

In this section we will give the timinings of a �rst implementation of the novel
arithmetics for Ker	���Cl �� We will also include timings for standard�ideal arith�
metic and modular arithmetic to allow comparison�

For the RSA analogues in totally non�maximal orders ���� we �xed �� �
���� and chose a random exponent k 	 n � pq� For all DL�based systems
	DSA and Schnorr� we chose a random k 	 
���� For the DSA�analogue based
on totally non�maximal orders we also �xed �� � ����� Note that due to the
recent result ���� this analogue with �p is only as secure as the original scheme
with p� Thus one needs to compare the lines for the �
�� bit DSA�analogue in
Cl	�p� with the time for ��� bit modular arithmetic�

For the NICE�Schnorr�analogue ���� we also chose a random k 	 
��� and
�p � ��p

� where �� � �q 	or �� � ��q if q � � 	mod �� respectively�
and p� q with equal bitlength� Because factoring integers is about as hard as the
computation of discrete logarithms 	modulo p� one needs to compare the timings
where �p and the prime modulus have the same bitlength�



The timings are given in microseconds on a pentium ��� MHz using the
LiDIA � package �
��� One should note that the implementation of neither variant
is optimized� This is no problem� because we are interested in the comparison�
rather than the absolute timings�

cryptosystem Schnorr � DSA RSA
arithmetic mod	 ideal Gen�exp Gen�exp Gen�CRT mod	 ideal Gen�exp

bitlength of p �p �p  ����p
� �p  �qp

� �p  �qp
� n  pq n  pq n  pq

��� ��� ���� ��� ��� �� ��� ����� ���
��� ��� ���� ��� ��� ��� ��� ����� ����
���� ��� ���� ��� ��� ��� ��� ����� ����
���� ��� ���� ��� ��� ��� ���� ����� ����
���� ���� ����� ���� ��� ��� ���� ������ �����
���� ���� ����� ���� ���� ��� ���� ������ �����

Table �� Timings for exponentiation with di�erent arithmetics

The timings in Table 
 show the impressive improvement� One can see that
the exponentiation using Algorithm � is already about thirteen times as fast
as an exponentiation using conventional ideal arithmetic� if �p � ����p� and
more than twenty times as fast for the Schnorr�analogue�

If we apply Algorithm 

 as proposed in ���� and outlined in Section ��
�
we are about forty times as fast as conventional ideal arithmetic� Using this
arithmetic the signature generation in the NICE�Schnorr�analogue is more than
twice as fast as in the original scheme in IF�p�

On the other side we see that the RSA�analogue ���� in totally non�maximal
orders is still far less e�cient than the original scheme and although immune
against low exponent and chosen ciphertext attack not preferable for practice�

Finally one should note that for the signature veri�cation in the NICE�
Schnorr�scheme one has to use standard ideal arithmetic� which is very inef�
�cient� Thus an important task for the future will be to speed up the standard�
ideal arithmetic as well� to enable practical application of the proposed Schnorr�
analogue �����
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