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Abstract. Recently there was proposed a novel public key cryptosystem
[17] based on non-maximal imaginary quadratic orders with gquadratic
decryption time. This scheme was later on called NICE for New Ideal
Coset Encryption [6]. First implementations show that the decryption is
as efficient as RSA-encryption with e = 2'® 4 1. It was an open question
whether it is possible to construct comparably efficient signature schemes
based on non-maximal imaginary quadratic orders. The major drawbacks
of the ElGamal-type [7] and RSA /Rabin-type signature schemes [8] pro-
posed so far are the slow signature gemeration and the very inefficient
system setup, which involves the computation of the class number h(A;)
of the maximal order with a subexponential time algorithm. To avoid
this tedious computation it was proposed to use totally non-maximal or-
ders, where h(A1) = 1, to set up DSA analogues. Very recently however
it was shown in [10], that the discrete logarithm problem in this case can
be reduced to finite fields and hence there seems to be no advantage in
using DSA analogues based on totally non-maximal orders.

In this work we will introduce an efficient NICE-Schnorr-type signature
scheme based on conventional non-maximal imaginary quadratic orders
which solves both above problems. It gets its strength from the difficulty
of factoring the discriminant A, = —rp®, r, p prime. To avoid the com-
putation of h(A1), our proposed signature scheme only operates in (a
subgroup of) the kernel of the map q’)éll, which allows to switch from the
class group of the non-maximal order to the maximal order. Note that a
similar setup is used in NICE. For an efficient signature generation one
may use the novel arithmetic [9] for elements of Ker(¢;). While the
signature generation using this arithmetic is already slightly faster than
in the original scheme, we will show in this work that we can even do
better by applying the Chinese Remainder Theorem for (Oa, /pOa,)”.
First implementations show that the signature generation of our scheme
is more than twice as fast as in the original scheme in IF;, which makes
it very attractive for practical applications.



1 Introduction

Since nobody can guarantee that currently used cryptosystems based on the
difficulty of factoring or the computation of discrete logarithms in some group
stay secure forever it is important to consider different primitives and groups
for the construction of cryptosystems. On the other hand the continously grow-
ing popularity of cryptosystems based on elliptic curves emphasize that certain
mathematical structures seem to allow more efficient implementation for the
same conjectured level of security.

Another recently proposed mathematical structure which allows the con-
struction of very efficient cryptosystems are non-mazimal imaginary quadratic
orders. For a recent survey of cryptosystems based on quadratic orders we refer
to the forthcoming [11]. For example it was shown in [17] that there is a public
key cryptosystem which has quadratic decryption time. To our knowledge this
is the only scheme having this property. First implementations show that the
decryption is about as efficient as the encryption with RSA with e = 2'6 4 1.
Note that this a very important feature, as the decryption often takes place in a
device with limited computational power, such as a smart card. It was an open
question whether there is also an efficient signature scheme based these non-
maximal imaginary quadratic orders. All currently proposed signature schemes
based on this structure have different drawbacks: The signature generation of the
ElGamal analogue [7] and the RSA /Rabin analogues [8] based on conventional
non-maximal orders is fairly inefficient. In fact, except from the Rabin-analogue,
one uses the particular structure of the non-mazimal order only to set up the
system. The signature generation itself has to be performed in the public non-
maximal order, which does not allow very efficient computation. For the system
setup one has to compute the class number h(A;) of the maximal order, where
|Aq] > 2290 to prevent A, from being factored using the Elliptic Curve Method
(ECM). The computation of h(A;) is done with an analogue of the quadratic
sieve with subexponential running time and hence is very inefficient. To avoid
this computation it was proposed in [8] to use totally non-maximal orders, where
h(A;) = 1. Using the recently developed exponentiation technique [9] one is able
to implement DSA analogues in these totally non-maximal orders almost as ef-
ficiently as conventional DSA in ]F; for the same conjectured level of security.
However, even more recently, it was shown in [10] that discrete logarithms in
the class group of totally non-maximal imaginary quadratic orders Cl(4,) can
be reduced to discrete logarithms in finite fields and hence there seems to be no
advantage in using this DSA analogue.

In this work we will introduce an efficient NICE-Schnorr-type signature
scheme based on non-maximal imaginary quadratic orders which solves both
above problems:

At first the system-setup is very fast, because we do not have to compute
the class number of the maximal order h(A;), but only compute in (a subgroup
of) the kernel of gzﬁall instead, which cardinality is known in advance. This is a
similar situation as for the NICE cryptosystem. As noted in [17], the restriction



to elements of the kernel does not seem to introduce any weakness as long as
the conductor p is kept secret and hence our scheme is based on the difficulty of
factoring A, = Ap*.

Second the signature generation of our proposed scheme is also very fast. To
perform the exponentiation of a generator g of a 160 bit subgroup of order ¢
of Ker(¢;) one can use the recently developed arithmetic [9], which is about
twenty times as fast as standard ideal arithmetic. This arithmetic allows the
signer to replace the fairly inefficient ideal arithmetic in the non-maximal order
by computations in (Oa, /pOa,)*.

In this work we will show that one can even do better by application of the
Chinese Remainder Theorem for (Oa, /pOa,)*. If (%) = 1 then there is an

isomorphism (04, /pOa,)* ~ T, ® IF,. Thus the signature generation in our
scheme essentially consists of two exponentiations in ]F;. Considering the best
algortihms (NFS and ECM) it is reasonable to assume that factoring A, = —rp?,
p,r ~ 210 prime, is "about as hard” as computing discrete logarithms in IF},
with p' about 1000 bits. Note that while it is conjectured that factoring numbers
of the form rp? is considerably easier than factoring n = pgq there is only an
ECM-variant [18] known which is able to make use of this special structure and
if r,p > 2240 this method is clearly infeasible. Thus the bitlength of the modulus
p in our exponentiations is only about one third of the bitlength of the modulus
in the original Schnorr scheme. Hence we end up with a signature generation
which is more than twice as fast as for the original Schnorr scheme [20], which
in turn is much faster than that of RSA for example.

Note that for possible Schnorr analogues working in subgroups of (Z /nZZ)*
for composite n, one needs to be very careful as pointed out in [14]. This issue
and the entirely different situation here is discussed in Section 4.

The paper is organized as follows: Section 2 will provide the necessary back-
ground and notations of non-maximal imaginary quadratic orders used in this
work. In Section 3 we will explain the proposed signature scheme. In Section 4
we will consider the security of our scheme. In Section 5 we will introduce the
novel exponentiation technique using CRT in (Oa, /pOa,)* and give timings
of a first implementation. This will show that the signature generation of our
scheme is more than twice as fast in the original Schnorr scheme, which makes
our scheme very attractive for practical application.

2 Necessary preliminaries and notations of imaginary
quadratic orders

The basic notions of imaginary quadratic number fields may be found in [2, 3].
For a more comprehensive treatment of the relationship between maximal and
non-maximal orders we refer to [4,7,9,10].



Let A = 0,1 (mod 4) be a negative integer, which is not a square. The
quadratic order of discriminant A is defined to be

Op=Z 4w,

w:{\/%, if A=0 (mod 4), (1)

#, if A=1 (mod 4).

where

The standard representation of some o € O, is @ = x + yw, where z,y € ZZ.

If A, is squarefree, then Oa, is the mazimal order of the quadratic number
field Q(v/A;) and A, is called a fundamental discriminant. The non-mazimal
order of conductor p > 1 with (non-fundamental) discriminant A, = A;p? is de-
noted by O4,. We will always assume in this work that the conductor p is prime.
Furthermore we will omit the subscripts to reference arbitrary (fundamental or
non-fundamental) discriminants. Because Q(v/A;) = Q(,/4,) we also omit the

subscripts to reference the number field Q(v/A). The standard representation of
an Oa-ideal is

= (a,b), (2)

a:q(Z—{—b_‘_\/ZZ)

2a

where ¢ € Qs ,a € Z g, c = (b* — A)/(4a) € Z, ged(a,b,c) =1 and —a < b <
a. The norm of this ideal is V'(a) = ag®. An ideal is called primitive if ¢ = 1. A
primitive ideal is called reduced if |b] < a < cand b>0,ifa=cor |b| =a. It
can be shown, that the norm of a reduced ideal a satisfies NV'(a) < 1/|A|/3 and
conversely that if M'(a) < y/|A|/4 then the ideal a is reduced. We denote the
reduction operator in the maximal order by p1() and write p,() for the reduction
operator in the non-maximal order of conductor p.

The group of invertible Oa-ideals is denoted by Za. Two ideals a,b are
equivalent, if there is a v € Q(\/Z), such that a = vb. This equivalence relation
is denoted by a ~ b. The set of principal Oa-ideals, i.e. which are equivalent
to Oa, are denoted by Pa. The factor group Za/Pa is called the class group of
Oa denoted by Cl(A). Cl(A) is a finite abelian group with neutral element O .
Algorithms for the group operation (multiplication and reduction of ideals) can
be found in [3]. The order of the class group is called the class number of Oa
and is denoted by h(A).

Our cryptosystem makes use of the relation between the maximal and non-
maximal orders. Any non-maximal order may be represented as Oa, = ZZ +
pOa, . If h(A) = 1 then O,, is called a totally non-mazimal imaginary quadratic
order of conductor p. An Ox-ideal a is called prime to p, if ged(N (a),p) = 1.
It is well known, that all O, -ideals prime to the conductor are invertible. In
every class there is an ideal which is prime to any given number. The algorithm
FindldealPrimeTo in [7] will compute such an ideal. If we denote the (principal)
O, -ideals, which are prime to p by P, (p) and Za,(p) respectively then there



is an isomorphism
Za,(p ~ ZAp -
5 )/7) () = /73 , =Cl(A4,). (3)

Thus we may ’neglect’ the ideals which are not prime to the conductor, if we
are only interested in the class group Cl(A4,). There is an isomorphism between
the group of O 4,-ideals which are prime to p and the group of O, -ideals, which
are prime to p, denoted by Za, (p) respectively:

Proposition 1. Let Oa, be an order of conductor p in an imaginary quadratic
field Q(V/A) with mazimal order O, .

(i) IfA€Za, (p), thena=AN0Oa, € La,(p) and N(A) = N (a).

(ii.) Ifa€Za,(p), then A =a0a, € Za,(p) and N(a) =N ().

(iii.) The map ¢ : A = AN O4, induces an isomorphism L, (p)—=La, (p)-
The inverse of this map is ¢ * : a > a0y, .

Proof: See [4, Proposition 7.20, page 144] . |

Thus we are able to switch to and from the maximal order. The algorithms
GoToMaxOrder(a,p) to compute ¢ and GoToNonMaxOrder(2l,p) to compute
 respectively may be found in [7].

It is important to note that the isomorphism ¢ is between the ideal groups
Ta,(p) and T, (p) and not the class groups.

If, for A,B € Ta, (p) we have 2 ~ B, it is not necessarily true that o(2A) ~
©(B).

On the other hand, equivalence does hold under p~!. More precisely we have
the following:

Proposition 2. The isomorphism ¢! induces a surjective homomorphism gzﬁall :

Cl(A,) — Cl(Ar), where a — p1 (o~ (a)).
Proof: This immediately follows from the short exact sequence:
Cl(4p) — Cl(A) — 1

(see [16, Theorem 12.9, p. 82]). O

In the following we will study the kernel Ker(¢s;) of the above map ¢,
and hence the relation between a class in the maximal order and the associated
classes in the non-maximal order in more detail. We start with yet another
interpretation of the class group Cl(A,).

Proposition 3. Let Oa, be an order of conductor p in a quadratic field. Then
there are natural isomorphisms

cua,) ~ Za, (p)/’p a (p) = IAl(p)/PAlz(p)’



where P 5 77(p) denotes the subgroup of Za, (p) generated by the principal ideals
of the form aOa, where a € Oa, satisfiesa =a (mod pOa,) for somea € ZZ
such that ged(a,p) = 1.

Proof: See [4, Proposition 7.22, page 145]. a

The following corollary is an immediate consequence.

Corollary 1. With notations as above we have the following isomorphism
—1y ~ PAl (f)
Ker(¢g;) =~ /fPAl,Z(f)'

The next result explains the relation between Ker(¢z;) and (Oa, /pOa,)*.

Proposition 4. The map (04, /pOa,)* — Ker(¢g} ), where a = ¢ (aOa,) is
a surjective homomorphism.

Proof: This is shown in the more comprehensive proof of Theorem 7.24 in [4]
(page 147). O

Thus one may reduce the arithmetic in Ker(¢,;) to more efficient compu-
tation in (Oa, /pOa,)*. This is precisely what was proposed in [9]. Using the
naive ”generator-arithmetic” as introduced there one is able to perform an ex-
ponentiation in Ker(gzﬁall) about twenty times as fast as by using standard ideal
arithmetic. In Section 5 we will show that one can even do much better by
applying the CRT in (O, /pOa,)*.

Finally, we will give the exact relationship between the class numbers h(A;)

and h(Ap).

Proposition 5. Let A; < —4, A; =0,1 (mod 4) and p prime. Then h(4Ap) =

h(Ay) (p - (%)) and |Ker(¢all)| = (p - (%)), where (%) is the Kronecker-
symbol.

Proof: Because O} = O} = {£1}, for A, = A p?, p prime and A; < —4 this
is an immediate corollary [4, Theorem 7.24, page 146]. |

Thus we are able to control the order of the kernel and consequently set up
a Schnorr analogue using the group Ker(¢g, ) instead of IF).

3 The new signature scheme

In this section we will show how one can set up a NICE-Schnorr-type signature
scheme using Ker(¢;) instead of IF7.

The system setup for Alice consists of the following steps:



1. Choose a random prime r and set Ay = —r if r =3 (mod 4) or A = —4r
otherwise.

2. Choose a random prime ¢, which will later on serve as the order of the used
subgroup of Ker(¢y,) C Cl(A,).

3. Choose a random prime p, such that (%) =1,q/(p—1) and set A, = A;p*.

4. Choose arandom @ = x+yw such that p(aO 4, ) is of order ¢ in Cl(A,). This
may be done by choosing a random 8 = z'+y'w and computing a = »P~1/4
until g = pp(p(aOa,)) # Oa, using the algorithm Gen-Exp from [9] or the
more efficient CRT variant introduced in Section 5.

5. Choose a random integer a < ¢ and compute the public key a = p,(g%).

6. The secret key of Alice is the triple z,y, a.

Note that Alice will keep secret p, ¢, r, x,y, a and only publishes A, g, a. Now
the signature generation and verification procedure is analogous to the original
Schnorr-scheme [20]. The only difference is that Alice may speed up the signa-
ture generation process by using the knowledge of @ = = + yw and performing
the computation in (Oa,/pOa,)* instead of using the fairly inefficient ideal
arithmetic.

More precisely Alice performs the following steps to sign a message m € ZZ:

1. Choose a random integer 1 < k < ¢ and compute ¢ =Gen-CRT(z,y,p, k),
where the algorithm Gen-CRT() is given in Section 5.

2. Compute e = h(m||t) and s = ae + k modg.

3. Alice’s signature for m is the pair (e, s).

The verification is completely analogous to the original scheme [20] using
standard ideal arithmetic (see e.g. [3]) in the non-mazimal order:

1. Compute v = p,(g°a °) and e = h(m]|v).
2. The signature is valid if and only if ' = e.

It is clear that the verification works if the signature was generated by Alice,
because b ~ g¥a~¢ ~ g®g~° ~ g* ~ £ Thus h(m|[€) = h(m||v) and hence e’ = e.

While the procedures for signature generation and verification are completely
analogous to the original scheme there is a big difference in the overall scheme
which has to be considered more closely. Our scheme is (beside other difficulties
which are explained below) based on the intractability of factoring A,. In step
2. the s-part of of the signature is unique modulo ¢, which is kept secret. Thus
by collecting a lot of signatures with different s’s one may hope to learn the
magnitude of ¢, which divides p — 1. This information might be useful to factor
Ap. In the next section however we will show that such an attack is no real
threat.



4 Security issues of the proposed scheme

In this section we will discuss the security and appropriate parameter sizes of our
proposed scheme. As it relies on the difficulty of computing discrete logarithms
in (a subgroup of) the kernel of gzﬁall we will start with relating this problem
to more conventional problems such as factoring and computing logarithms in
finite fields.

The following result shows that ”in practice” the DL-problem in Ker(gzﬁall) is
”about as hard” as factoring A,.

Theorem 1. With notations as in the previous section we have the following
two probabilistic polynomial time reductions:

1. Factoring the discriminant A, can be reduced to the DL-problem in Ker(gzﬁall).
2. If the factorization of A, = A;p? is known, then one can reduce the DL-
problem in Ker(gzﬁall) to the DL-problem in IF.

Proof:(Sketch) To show 1. we assume that some oracle is able to compute dis-
crete logarithms in Ker(¢7, ). That is given a fixed generator g of Ker(¢g,) it
returns on input of some element g° € Ker(¢5}) the smallest possible exponent
e. It is easy to see that this oracle can be used to determine |Ker(¢.;)| = p+1,
where the +’ occurs for our concrete setup. This is done by choosing some e’
and handing over g¢ to the oracle. Then e/ > |Ker(¢5ll)| implies that ¢’ > e and
thene' —e = k|Ker(¢all)| for some integer k. If we repeat this step multiple times
then the ged of the obtained differences will be |Ker(¢g; )| with high probability.
The reduction 2. is shown in [10]. i

Note that as in the original Schnorr-setup our scheme operates in a subgroup
of the kernel. While it is not rigorously proven it is commonly assumed that the
DL-problem in the subgroup is indeed as hard as the ”full” DL-problem. Thus
the assumption that the DL-problem in a subgroup of Ker(¢; ) is computational
equivalent to the DL-problem in Ker(¢g, ) itself is denoted by (subgroup-DL).

If we furthermore assume that our hash function acts like a random oracle
[1], denoted by (ROM), then it is easy to prove the following result in complete
analogy to [19, Theorem 5]:

Theorem 2. Assume (ROM). If an existential forgery of the NICE-Schnorr
signature scheme, under an adaptively chosen message attack, has non-negligible
probability of success, then the discrete logarithm in subgroups of Ker((ball) can
be solved in polynomial time.

Thus we may combine the above results to obtain the following:

Corollary 2. Assume (ROM) and (subgroup-DL). Furthermore assume that
one is able to compute discrete logarithms in ]F;, which is feasible for the pro-
posed parameter sizes. Then forging of signatures in our NICE-Schnorr-scheme
is equivalent to factoring A, = Ayp?.



Thus our scheme is secure as long as we choose the parameters as follows:

— That one cannot compute discrete logarithms in C1(4,) D Ker(¢7;) using
a subexponential algorithm [12] we require A, > 2100,

— That one cannot use a generic technique to compute discrete logarithms in

the subgroup of the kernel, such as Pollard’s p-method, we require g > 2160,

If one is able to factor A, then one can reduce the discrete logarithm problem

in the kernel to the discrete logarithm problem in IF; using the recent re-

duction from [10]. Thus we need to ensure that A, cannot be factored. With

current algorithms (NFS and optimized ECM [18]) this should be impossible

if we require A, > 27° and p,r > 2240,

— As we do not disclose ¢, where ¢|(p — 1), we need to take care that the
knowledge of many signatures does not help to find ¢, and hence breaking
the scheme by factoring A, easier.

In the following we will discuss the potential threat of estimating g with the
knowledge of many signatures more thoroughly. We will only sketch the main
ideas here.

Estimating ¢ by the maximal value of s

It is clear that ¢|(p — 1) and our scheme can be easily broken if A, = Ap? is
factored, because in this case one uses the result of [10] and is just faced with the
computation of discrete logarithms in IF;, which is possible for the proposed size
of p. While it is not clear at the moment whether knowledge of ¢ will immediately
imply the knowledge of p, we will show that collecting signatures and taking care
of the maximum s-value does not even help to come very close to g.

Since for all signatures (e;, s;) it holds that s; € [0,¢ — 1] an attacker could
try to estimate ¢ by the max;(s;) and then to use this gained information to
factor A,. The following argument shows that with overwhelming probability
max;(s;) is not close enough to q.

Since h is a strong hash function we may assume that e = h(m|[¢) and k
are not significantly correlated for randomly chosen m and k. For simplicity we
assume that e and k are statistically independent. Then s = ae + k mod q is
uniform distributed in [0, g — 1]. Therefore, for fixed 0 < o < 1 and for randomly
chosen messages m, . . ., m, and randomly chosen k1, ..., k, with probability o™
the inequality s; < a(g — 1) holds for all 7 < n. Thus for n < m the probability
that s; < (1 —1/m)q holds for all i < n is approximately (1 —n/m).

If we assume that the number n of signatures is limited by 22° we can estimate
that for all, say £ > 20 at most with probablity 22°~¢ there is an i < n with
s; > (1 —27%)q. On the other hand if ¢ & 2'%° an attacker using the estimation

max;(s;) < agq (4)

with a < (1—27%) still has a search space of 2~ ‘max;(s;) ~ 2'%°~¢ many possible
values ¢ satisfying (4). Now if we assume that the time needed for finding ¢ is
about the square root of the size of the search space (i.e. 28°~¢/2) we can estimate



the expected workload of this attack by 280-¢/2/220=¢ = 260+£/2 5 970 which
would be a formidable task. Note that to our knowledge there is no way to use
that ¢ is prime if one applies a ”square root” algorithm such as Pollard-p to
determine q.

Security problem of Schnorr-analogue in prime order subgroups of
(ZnZ)* - Immunity of our scheme

The main practical advantage of our proposed scheme compared to the orig-
inal one is its very efficient signature generation due to application of CRT for
(Oa,/pOa,)*. Thus one may think about a Schnorr-analogue operating in a
prime order subgroup of (Z /nZZ)* rather than IF}, which would allow the same
speedup by using CRT for (ZZ/nZZ)* in this case.

However we will briefly show in the following that, in contrary to our scheme,
the breaking of such an analogue in (ZZ/nZZ)*, is surprisingly easy.

Let n = pipa, p1,p2 prime and g be of order ¢ in (ZZ/nZZ)*, where q is
prime. Because, g? =1 (mod n) we know by the CRT that g? =1 (mod p;)
and g7 =1 (mod p>). Thus it is clear that ¢ must divide at least one of the
numbers p; — 1 or p, — 1. W.l.o.g. we may assume that

ql(p1 — 1) (5)
Now there are two different cases to consider:

L g f(p> = 1):
Because g is of order ¢ in (ZZ/nZZ)* (and by (5) also in IF, ), we have g # 1
(mod py).
But ¢ =1 (mod p2) together with ¢ /(p2 — 1) and the primeness of ¢
implies that ¢ = 1 (mod ps) and hence g — 1 = pok for some integer k.
Thus n is easily factored by computing p» = ged(g — 1,n). Note that in this
case one does not even need to know ¢ and this case is very likely if po is
chosen randomly.

2. ql(p2 — 1):
In this case the scheme is similar to [5] and as shown in [14] is not immediately
broken, but factoring n is made much easier, if one knows g.
We have n = (2¢gp] +1)(2¢gph+1), for some (in the worst case prime) numbers
P, ph- o
Then by [14, Proposition 2] one can factor n in O(@) steps. Thus if
P, D5, q are the same order of magnitude this is a trivial task. Hence one
must take great care, when working with subgroups of (Z /nZZ)*.

The situation for our proposed scheme in Ker(¢o;) C Cl(4,) is entirely
different, because there is no gcd-analogue known for imaginary quadratic class
groups, which could be applied to mount an ”attack” like explained in the first
situation above. Note that the existence of such a ged-analogue would also imply
the insecurity of NICE. The situation that g|h(A;), which corresponds to the
second situation above, is very unlikely if g, Ay are chosen at random.



5 More efficient exponentiation using CRT in
(Oa,/POA,)* and timings

In Section 2 and [9] we saw that the arithmetic in Ker(¢7,) can be reduced to
arithmetic in (O, /pOa,)*, which is much more efficient. In this section we will
introduce a method which again speeds up the signing process considerably.

We will start with an auxilliary result.

Lemma 1. Let O, be the mazimal order and p be prime. Then there is an
isomorphism between rings

(Oa,/pOa,) ~ IF”[X]/(f(X)),

where (f(X)) is the ideal generated by f(X) € IF,[X] and

X2 4 if Ay =0 (mod 4)

— 4 )
f(X)_{X2—X+1‘4A1,ifA151 (mod 4). (6)
Proof: See [10, Proposition 5]. i

This isomorphism between rings clearly implies an isomorphism between the
multiplicative groups and with a little more effort we can show the central result
of this section.

Theorem 3. Assume that (%) =1 and the roots p,p € IF,, of f(X) € TF,[X]
as given in (6) are known. Then the following isomorphism can be computed in
time O((logp)?):

(0a,/p0a,)" ~F, 2T,

Proof: From Lemma 1 we know that there is an isomorphic map (Oa,/pOa,)* —
IF,[X)(f(X))", where f(X) € IF,[X] is given in (6). And that this isomorphism
is trivial to compute.

Because (%) = 1 the polynomial f(X) is not irreducible, but can be de-

composed as f(X) = (X — p)(X — p) € Fp[X] where p,p € IF, are the roots
of f(X). Thusif Ay =0 (mod 4) and D = A;/4 we have p € IF, such that
p? = D (mod p) and p = —p. In the other case A; = 1 (mod 4) we have
p=(1+0b)/2, where ¥* = A; (mod p) and p = (1 — b)/2 € IF,,. Thus we have
the isomorphisms

©a/p0a) = (T _ ) o (P ) =Wy 0

Let « = a+bw € (Oa,/pOa,)* then the mapping ¢ : (Oa,/pOa,)* —
IF) @ IF} is given as 1 = 91 (a) = a+bp € IF, and 23 = ¢»(a) = a + bp € IF},.
The inverse map )~ ! is computed by solving the small system of linear equations.



Le. one will recover a,b € IF) by computing b = 2= and a = x; — bp. Thus

both transformations ¢» and ¢~! need time O((logp)?). |

With this result we immediately obtain the of the following algorithm.

Algorithm 4 (Gen-CRT)
Input: @ = z +yw € O,,, the conductor p, such that gcd(N (a),p) = 1,
(%) =1, the roots p,p € ), of f(X) as given in (6) and the exponent n € ZZ.

Output: a = (a,) = p,(((a04,)™)-

. IFn =0 THEN OUTPUT(1,A; (mod 2))
IFn <0 THENn ¢ —n, y < —y
.21+ (z+py)"  (mod p)
2 ¢ (@ +py)"  (mod p)
r<(p—p)~t (modp)
yn  (z2 —x1)r (mod p)
xp < x1 —ypp (mod p)
. /* Compute the standard representation A = d(a,b) = apOa, */
8.1 /* Use %-form */
Th < 2xp
IFA =1 (mod4) THEN zj, + x4 + yn
8.2 Compute d + ged(yn, (wn + yn21)/2) = Ayn + (o + ynA1)/2, for
N € Z
8.3 A« |27 — Ayil/(4d?)
8.4 B + (/\il’h + ,U(:L’h + yh)Al/Q)/d (mod 2A)
9. /* Lift A' = (1/d)2 to the non-mazimal order and reduce it */
b+ Bf (mod 24)
(a,b) < pp(A,D)
10. OUTPUT(a,b)

e R T X

Correctness: The correctness of the exponentiation part is immediate, because
we just compute the isomorphism ¢ as given in the proof of Theorem 3, perform
two exponentiations in ]F; and compute 1) 1. The rest of the algorithm is equal
to this part in Gen-Exp [9, Algorithm 19]. a

Note that the computation of r in Step 5 can be done in a precomputation
phase, as is it independent of the current a.

Finally we will give the timings of a first implementation using the LiDIA -
package [13]. The timings of the exponentiation are given in microseconds on a
Pentium 133 MHz. We used a random exponent k < 2'0 and A, = A;p® where
Ay = —q (or Ay = —4q if ¢ =1 (mod 4) respectively) and p,q with equal
bitlength. This may be compared with the timings for an exponentiation in ¥,
where p' has the same bitlength as A,. We neglected the time for hashing and
computing the s-value.

One should note that the implementation of neither variant is optimized.
This is no problem, because we are interested in the comparison, rather than
the absolute timings.



| group | IF, | Ker(q&gll) |

arithmetic |modular|Gen-exp [9]|Gen-CRT

bitlength of P Ay Ay
600 188 159 83
800 302 234 123
1000 447 340 183
1200 644 465 249
1600 1063 748 409
2000 1454 1018 563

Table 1. Timings for Schnorr-signature generation

These timings show that the signature generation of our proposed scheme
using the novel CRT variant for exponentiation is more than twice as fast as the
original scheme. While the signature verification is much less efficient than in
the original scheme, this should be no problem, as the verification is usually not
performed in a device with limited computational power, such as a smartcard.

6 Conclusion and future work

We have introduced a new signature scheme based on non-maximal imaginary
quadratic orders, which features very fast signature generation. The security
analysis shows that using standard assumptions the forging of signatures is
equivalent to factoring A, = A;p®. Thus beside further studying implementa-
tion issues of cryptosystems based on non-maximal imaginary quadratic orders
it will be an important task for the future to consider the factorization problem
for this type of non-fundamental discriminant more closely.
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