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Abstract. We present a new non-interactive public-key distribution system based
on the class group of a non-maximal imaginary quadratic order CI(A,). The main
advantage of our system over earlier proposals based on (Z/nZ)" [26, 28] is that
embedding id information into group elements in a cyclic subgroup of the class
group is easy (straight-forward embedding into prime ideals suffices) and secure,
since the entire class group is cyclic with very high probability. Computational
results demonstrate that a key generation center (KGC) with modest computational
resources can set up a key distribution system using reasonably secure public system
parameters.

In order to compute discrete logarithms in the class group, the KGC needs to
know the prime factorization of A, = A;p?. We present an algorithm for comput-
ing discrete logarithms in CI(A,) by reducing the problem to computing discrete
logarithms in CI(A1) and either Fj, or F},. Our algorithm is a special case of that
in the more general setting of ray class groups [5], but we present it in terms of
ideals of quadratic orders without using class field theoretic language, and we prove
— for arbitrary non-maximal orders — that the reduction to discrete logarithms in
the maximal order and a small number of finite fields has polynomial complexity if
the factorization of the conductor is known.

Keywords: discrete logarithm, non-maximal imaginary quadratic order, identity
based cryptography, non-interactive cryptography

1. Introduction

Public-key cryptography is undoubtedly one of the core techniques
used to enable authentic, non-repudiable and confidential communi-
cation. However, a general problem inherent in public-key systems is
that one needs to ensure the authenticity of a given public key. The
most common way to solve this problem is to introduce a trusted third
party, called a Certification Authority (CA), which issues certificates for
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public keys'. While this approach is widely used in practice, it would be
desirable to have an immediate binding between an identity IDp and
its corresponding public key b, which allows one to avoid the tedious
verification of certificates. This leads to the notion of identity based
cryptosystems, as proposed by Shamir [36]. For signature schemes, the
public key b is only needed when a user receives a signed message,
and thus it is tolerable that the public key b is derived from IDp
and some identity-specific system parameter SPp, which can easily
be appended in this case. However, in order to achieve non-interactive
public-key encryption and key distribution schemes, it is necessary that
the knowledge of I Dp alone is sufficient to derive the public key b. This
type of scheme was first proposed by Maurer and Yacobi [26]. They
proposed setting up a discrete logarithm based system in G = (Z /nZ)*,
where n = p1 -+ - p,, p; prime, such that only a key generation center
(KGC) which knows the factorization of n is able to compute discrete
logarithms in G. However, as we will see in Section 2, this approach
has a number of drawbacks which render such a scheme impractical.

In this paper we show that using the class group CI(A,) of a non-
maximal imaginary quadratic order is much better suited for this pur-
pose. As in the original scheme, the KGC knows some trapdoor informa-
tion which enables it to compute discrete logarithms, while for anybody
else the discrete logarithm problem is (assumed to be) intractable. We
begin by generalizing the recent result from [15], valid for the very
special case of totally non-maximal orders with prime discriminant,
to arbitrary non-maximal imaginary quadratic orders. The resulting
algorithm reduces the problem of discrete logarithm computation in the
class group of a non-maximal order to computing discrete logarithms in
the much smaller class group of the corresponding maximal order and a
small number of finite fields. This algorithm is a special case of that for
computing discrete logarithms in ray class groups [5], but we present
it in the framework of maximal and non-maximal orders rather than
ray class groups. In addition, we prove that the reduction to discrete
logarithms in the corresponding maximal order and finite fields is of
polynomial complexity. These results are then applied to set up a more
practical non-interactive scheme using Cl(A,).

As noted above there are a few advantages to our approach. Unlike
the case of (Z/nZ)*, it is heuristically easy to find class groups CI(Ap)
which are cyclic, and hence the embedding of an identity /Dp into a
group element b, for which the discrete logarithm exists, is straightfor-
ward. As the results from [27, 25] demonstrate it seems to be no trivial

! We assume throughout this work that Alice (A) wants to encrypt a message

m € Zso intended for Bob (B). We denote Bob’s unique identity, for example his
email-address, by IDp and his public key by b.
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task to find an embedding into a subgroup of (Z/nZ)* which does not
facilitate factoring n. In fact, the only secure embedding method for
(Z/nZ)* seems to restrict n to having only two large prime factors
p1 and py, and the workload for the KGC is consequently very high.
Furthermore, since one chooses p;—1 smooth and uses Pohlig-Hellman’s
simplification together with Shank’s Baby-Step Giant-Step algorithm,
the time needed for generating k user keys is proportional to k.

In contrast, we use two different subexponential algorithms for the
key generation. After the initial computation of relations over the factor
bases, the workload for each individual key generation is very modest.
For the computation of discrete logarithms in CI(A;) we use an ana-
logue of the Self-Initializing Quadratic Sieve (SIQS) factoring algorithm
[16, 17] and for the computation of discrete logarithms in I}, we use the
Special Number Field Sieve, which recently was used for the solution
of McCurley’s challenge [38].

This paper is organized as follows: In Section 2 we briefly recall previ-
ous proposals for non-interactive public-key cryptosystems. In Section 3
we provide the necessary background and notation for non-maximal
imaginary quadratic orders. The next section briefly summarizes the
current state-of-the art algorithms for computing discrete logarithms in
finite fields and maximal imaginary quadratic orders, the two necessary
ingredients for our reduction of discrete logarithm computation in non-
maximal orders. Section 5 contains the discrete logarithm algorithm
for arbitrary non-maximal imaginary quadratic orders. In Section 6 we
present our new non-interactive public-key cryptosystem, followed by
computational examples in Section 7.

2. Previous proposals of non-interactive cryptosystems

Although the paradigm of identity based cryptography was already
introduced by Shamir in 1984 [36], it seems that Maurer and Ya-
cobi [26] were the first to propose a non-interactive identity based
public-key cryptosystem in which Bob’s public key b can be derived ef-
ficiently, solely from his public identity information I Dp, by computing
a publicly-known embedding function b = f(IDp). The main idea is to
use an (ideally cyclic) group G (generated by g) in which exponentiation
is not only a one-way function but a trapdoor one-way function. The
KGC knows the trapdoor information and hence is able to compute
discrete logarithms in G. Thus, the KGC computes Bob’s private key
b such that g® = b = f(IDg). The KGC hands over the secret key b to
Bob, who can use this key in a conventional ElGamal or Diffie-Hellman
setup. As soon as all users are equipped with their corresponding secret
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key, the KGC can destroy the trapdoor information and may cease to
exist.

One approach to set up such a non-interactive cryptosystem would
be to use the group G = (Z/nZ)*, where n = py ---p, is the product
of r different primes. The KGC generates n such that factoring it is
hard and publishes n, while it keeps the prime factors secret. However,
it is well-known that (Z/nZ)* is cyclic if and only if n € {2,4, 2p*, p*}
for an odd prime p and k € Z~(. Since we require that factoring n is
hard we obviously cannot use such a modulus n, and consequently, we
cannot guarantee that the discrete logarithm for some b = IDp to a
universal base element g exists. Therefore one needs to apply a more
sophisticated embedding function which maps an identity /Dp into a
cyclic subgroup of (Z/nZ)*.

Maurer and Yacobi proposed choosing g to be a simultaneous prim-
itive root of all finite fields I, ,---,F; and the following embeddings

p17°
to guarantee the existence of discrete logarithms to the base g :

1. Squaring method

In [26] they proposed using f(IDg) := ID% mod n. However, later
on [27] they recognized that this method is extremely vulnerable,
because a single user can find a non-trivial factor of n with proba-
bility 1 — 27"+ > 1/2. To avoid this weakness, they proposed that
the KGC masks all secret keys with a fixed t € (Z/¢(n)Z)* and
perform all other computations as usual. However, in [25] it was
shown that with high probability this proposed masking does not
prevent factoring n when two users mutually disclose their secret
key. Thus, the squaring method should not be used, due to security
reasons.

2. Legendre Symbol method
In [26] they also propose using the special case of n = pips as
“an alternative though less practical approach ...for the sake of
completeness.” They initially proposed taking the smallest number
b > IDp with (b/n) = 1 as the public key. In [27] they refined
this embedding-function, and proposed using p; =3 (mod 8) and
pe =7 (mod 8) such that (2/n) = —1 and

IDg if (%):1

n

b= f(IDp) = { 20D if (122) = -1
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to guarantee the existence of a discrete logarithm. In both cases
the method is only feasible? for the case n = ppo. They propose
choosing p; — 1 and py — 1 fairly® smooth and use the algorithm
of Pohlig-Hellman to compute the discrete logarithms. But, unlike
using subexponential time algorithms for discrete logarithm com-
putation, the computation of every individual logarithm is very
expensive. Therefore this approach is too inefficient to be used in
practice. Lim and Lee [23] came to a similar conclusion.

It should be noted that Okamoto and Uchiyama [31] proposed an
analogous system using the group of points on an anomalous elliptic
curve over the ring (Z/nZ), n = p1ps2, which seemed to be very prac-
tical because the discrete logarithm in this group can be computed
in polynomial time if one knows the factorization of n. Unfortunately,
they found (prior to publication) that this scheme can be completely
broken because one easily finds the factorization of n in this setup.

In [19] Kigler studied the application of a public factor base to
obtain practical non-interactive schemes. While the key generation for
the KGC can be performed in polynomial time this approach has the
severe drawback that every user needs to store a public factor base,
which may need more than 1 MByte in a practical setup. Furthermore,
the size of the factor base needs to be at least as large as the number
of users to prevent an attack by solving a system of linear equations.

3. Background and notation for non-maximal imaginary
quadratic orders

The basic notions of imaginary quadratic number fields can be found in
[3, 4]. For a more comprehensive treatment of the relationship between
maximal and non-maximal orders we refer to [7, 13, 15, 30].

3.1. MAXIMAL IMAGINARY QUADRATIC ORDERS

Let A = 0,1 (mod 4) be a negative integer whose absolute value is
not a square. The quadratic order of discriminant A is defined to be

OA=Z+WwZ ,

2 In [27] they also propose a generalization to the case n = pi---p,, but this
approach is completely impractical since both Alice and Bob need to perform r — 2
additional exponentiations and the transmitted key is 7 — 2 times as long.

3 Since Pollard’s p — 1 factoring algorithm [32] factors n efficiently if all prime
factor4s of p; — 1 are smooth one should choose the primes ¢ dividing p; — 1 such that
q > 2%,
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where

w:{\/é, if A=0 (mod4) , O

LA if A=1 (mod4) .

The standard representation of « € Oa is @ = z + yw, where z,y € Z.

If Ay (or Aj/4if A =0 (mod 4)) is square-free, then Oa, is the
mazimal order of the quadratic number field Q(v/A;) and A is called a
fundamental discriminant. The non-mazimal order of conductor f > 1
with non-fundamental discriminant Ay = A;f? is denoted by Oa 4
We omit the subscripts to reference arbitrary (fundamental or non-
fundamental) discriminants. Because Q(v/A1) = Q(\/Af) we also omit
the subscripts to reference the number field Q(+/A). The standard
representation of an Oa-ideal is

b+ VA
2a

a=q<Z—I— Z)zq(a,b) ,

where ¢ € Qsq,a € Zg, ¢ = (b2 — A)/(4a) € Z, ged(a,b,c) = 1 and
—a < b < a. The norm of this ideal is A'(a) = ag?. An ideal is called
primitive if ¢ = 1. The standard representation of a primitive ideal
boils down to (a,b). A primitive ideal is called reduced if |b] < a < ¢
and b > 0 if @ = c. It can be shown that the norm of a reduced ideal
a satisfies A'(a) < /|A|/3 and conversely that if N'(a) < /|A[/4 then
the ideal a is reduced.

The group of invertible Oa-ideals is denoted by Za. Two ideals a, b
are said to be equivalent if there is a v € Q(v/A), such that a = «b. This
equivalence relation is denoted by a ~ b. The set of principal Oa-ideals,
i.e., those ideals which are equivalent to Oa, is denoted by Pa. The
factor group Za/Pa is called the class group of Oa, denoted by CI(A).
The group elements are equivalence classes (denoted by [a]), and the
neutral element is the class of ideals equivalent to Oa. Each equivalence
class can be represented uniquely by a reduced ideal. Algorithms for the
group operation (multiplication and reduction of ideals) can be found
in [4]. CI(A) is a finite abelian group, and its order is called the class

number of Oa, denoted by h(A).

3.2. NON-MAXIMAL IMAGINARY QUADRATIC ORDERS

Our cryptosystem makes use of the relationship between a non-maximal
order of conductor f and its corresponding maximal order. Any non-
maximal order can be represented as Oa, = Z + fOa,. If h(Ay) =1,
then Oa P is called a totally non-maximal order. An Oa-ideal a is called
prime to f if ged(N(a), f) = 1. It is well-known that all O -ideals
prime to the conductor are invertible, and in every ideal equivalence
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class there is an ideal which is prime to any given integer. We denote
the principal O ,-ideals, which are prime to f by Pa, (f) and all O ;"
ideals which are prime to f by Za f( f). Then there is an isomorphism

IAf(f)/,PAf(f) ~ IAf/PAf = Cl(Ay) , (2)

so we can “ignore” the ideals which are not prime to the conductor if
we are only interested in the class group CI(Ay).

There is an isomorphism between the group of O ,-ideals which are
prime to f and the group of Oa,-ideals which are prime to f, denoted
by Za,(f), and Za, (f), respectively.

PROPOSITION 1. Let Oa, be an order of conductor f in an imagi-
nary quadratic field Q(v/A) with mazimal order Op,.

(i.) IfAE€Ia(f), then a=AN O, € Ia,(f) and N() = N (a).
(ii.) If a € Za,(f), then A = aOa, € Ia,(f) and N(a) = N (D).
(iii.) The map ¢ : A+ AN O, induces an isomorphism T, (f)>Ia,(f)-
The inverse of this map is o' : a+ aOax,.
Proof. See [7, Proposition 7.20, p.144]. O

Thus we are able to switch to and from ideals in the maximal and non-
maximal orders via the map ¢. The algorithms GoToMaxOrder(a, f) to
compute ¢~ and GoToNonMaxOrder(2, f) to compute ¢ respectively
can be found in [13]. If a = aZ + (b + \/Af)/2Z = (a,b) and A =
AZ+(B++/A1)/2Z = (A, B) are reduced ideals, then these algorithms
need O(log(]A1])?) and O(log(|Af|)?) bit-operations respectively.

It is important to note that the isomorphism ¢ is between the ideal
groups Ia,(f) and Za,(f) and not the class groups. If, for 2,B €
Za,(f) we have 2 ~ B, it is not necessarily true that () ~ ¢(B).
On the other hand, equivalence does hold under ¢~!. More precisely
we have the following:

PROPOSITION 2. The isomorphism ¢~ induces a surjective homo-
morphism
bl Cl(Af) = CI(A1), where [a] =~ [p~(a)].

Proof. This immediately follows from the short exact sequence:

Ci(Ay) — Cl(A1) — 1

(see [30, Theorem 12.9, p. 82]). O

We now focus on the kernel Ker(¢; ) of this map, which will turn out
to be of central importance for the computation of discrete logarithms
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in CI(Ay). In particular, we will need to compute discrete logarithms
of elements in Ker(ngEll). Representing elements of Ker(gball) as ideal
equivalence classes is completely inadequate for this purpose since we
would have to compute discrete logarithms in CI(Ay). Fortunately,
there exists an alternative representation which allows us to reduce
the problem of computing discrete logarithms in Ker(qﬁall) to that in a
small number of finite fields.

PROPOSITION 3. The map ¢ : (Oa,/fOn,)* — Ker(¢g;), [a] —
[ (@O, )], is a surjective homomorphism.

Proof. This is shown in the more comprehensive proof of Theorem
7.24 in [7, p.147]. O

This homomorphism suggests the following representation for ideal
classes in the kernel:

DEFINITION 1. Let [a] = [z + yw] € (Oa,/fOa,)" and let a ~
p(aOa,) be a reduced On,-ideal whose equivalence class is in Ker(gball).
Then the pair (x,y) is called a generator representation for the equiv-
alence class [a].

DEFINITION 2. Let Im((Z/fZ)*) denote the natural embedding of
(Z/fZ)* into (Oa,/fOn,)", i.e.,

Im: (Z/fZ7)" = (Oa,/fOna,)"
[z] = [(z,7)] -

Remark 1. Note that this generator representation (z,y) for the class
of a is not unique. It is easy to see that (kz,ky), k € (Z/fZ)*, is
also a generator representation for the class of a. This means that
we have a ~ o((z + yw)Oa,) ~ o((kx + kyw)OAa,). In other words,
Ker(¢g;) = (Oa,/fOn,)*/Im((Z]fZ)¥), as illustrated by the exact
sequence (7.27) in [7, p.147].

Our reduction of the discrete logarithm problem in CI(Af) to CI(A;)
and finite fields requires computing various preimages of elements in
Ker(¢.,;) under the map 7. Algorithm 1 (Std2Gen) accomplishes this
task. The algorithm Reduce reduces an ideal 2 given in standard rep-
resentation and simultaneously computes a reducing number v € O,
of the form (z + yv/A1)/2 such that /v is reduced (see, for example,
[16, Algorithm 2.6, p.16)).

Proof (correctness of Std2Gen). The first step in the routine Go-
ToMaxOrder [13] is to compute an ideal ' ~ a with ged(N (d'), f) = 1).

nonint_kl.tex; 16/05/2001; 14:42; p.8



Algorithm 1 Std2Gen
Input: The standard representation (a,b) of a reduced O ,-ideal a =

b+4/A . . —
aZ + %Z representing a class in Ker(qSCll), and the conductor f.
Output: A generator representation (z,y) of the class [a] € Oa,.

(a,b) + GoToMaxOrder(a, f)

(&,7) +Reduce(a, b)

if ® £ O, then
return(’Error! a ¢ Ker(¢;;)")

end if

if Ay =0 (mod 4) then
T+ z/2 (mod f)
5 y/2 (mod )

else
T (z-1)/2 (mod f)
gy (mod f)

end if

return((Z,7))

Thus, we obtain the principal ideal 2l = YOa, = ¢ (d') = aZ + (b +
V/A1)/2Z in standard representation. The algorithm Reduce computes
® ~ 2 such that & is reduced, together with v = (z + yv/A1)/2
such that & = A/vy. If & # Oa,, then a cannot be in the kernel
Ker(¢g;) and an error is returned. Otherwise, since & = 20/ and
& = Oa, we have (y) = 2, ie., v is a generator of the principal
ideal 2. Finally, we simply convert v to the form x + yw, and since
ged(N (o), f) = ged(N (), f) = ged(N(7), f) = 1, we may apply [10,
Lemma 5] and reduce modulo f without leaving the equivalence class
of a. |

PROPOSITION 4. Std2Gen needs O(log(|Af|)?) bit-operations.
Proof. Since a is reduced, GoToMaxOrder needs O(log(|Af[)?) bit-

operations. Since a = N (a’), we know by [2] that the reduction, includ-

ing the computation of v, also takes O((log |Af|)?) bit-operations. O

4. DLP in CIi(A) and finite fields — state of the art

Let G be a finite abelian (multiplicatively written) group and g € G be
a fixed element. Then the discrete logarithm problem (DLP) in G for
a given a is to determine an a € Z such that g® = a, or show that no
such a exists.
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The best available algorithm for computing discrete logarithms in
finite fields is the number field sieve (NFS) [9, 34, 35]. D. Weber has
implemented this algorithm [37] and successfully computed discrete
logarithms in a number of very large finite fields. Recently, he and
T. Denny solved McCurley’s discrete logarithm challenge, a discrete
logarithm problem in a finite prime field for a 426-bit prime [38].

Let Oa be any quadratic order. The best available algorithm for
computing discrete logarithms in CI(A) uses a generalization of the
self-initializing quadratic sieve factoring algorithm [17]. The main idea
behind this algorithm is as follows. First, compute the structure of
CI(A) as a direct product of cyclic subgroups,

!
Cl(A) ~ @ C(mi),

together with generators g; of each cyclic subgroup (order of [g;] in
CI(A) is m;). Then compute the representations

l l
a~ [[od, b~]] g
i=1 =1

of a and b over the generators. If we can find z satisfying

! !
I o5 ~ I] o7,
1=1 =1

then z is the discrete logarithm of a to the base b. The integer z can
be found by solving the system of simultaneous congruences

a; = zb; (mod m;), 1<i<I, (3)

using the generalized Chinese remainder theorem. If (3) cannot be
solved, the given discrete logarithm problem has no solution.

The first problem which must be solved in order to implement this
method is to compute the structure of CI(A). We use the method
described in [16] (Algorithm 4.3). Suppose we have computed a factor
base FB = {p1,...,px} consisting of invertible prime ideals such that
the equivalence classes of some subset of F'B generates CI(A). For
7 € Z* we define

k
=1

where p; € FB. We call ¥ a relation if FB" ~ O, i.e., the ideal
given by FBY is principal. A generating system L = {#1,...,%,} of the
relation lattice

A={7€Z*| FB" ~ Op} (4)
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is then produced, which is the kernel of the homomorphism
zZ*¥ - Cl(A), ©— FBY . (5)

Since the equivalence classes of the ideals of F'B generate the class
group, it follows that the homomorphism (5) is surjective, and we have

Cl(A) ~7ZF/A .

This implies that A is a k-dimensional lattice and its determinant is
equal to h(A). Also, the relation matriz A = (97 ,...,4L), the matrix
formed by taking the relations ; as columns, has rank k. The diagonal
elements which are greater than 1 in S, the Smith normal form of A,
are precisely the elementary divisors of CI(A).

The major difference between this approach and that of earlier
subexponential algorithms is in the way the generating system of the re-
lation lattice is produced. The solution employed by earlier algorithms
is to attempt to factor randomly produced ideals over the factor base.
We replace this step by a sieve-based strategy similar to that used in
the self-initializing quadratic sieve factoring algorithm [1]. We refer the
interested reader to [16] for more details.

Once the structure of CI(A) is computed, we have to compute repre-
sentations of a and b over a system of generators of CI(A). As shown in
[17], the main work involved is essentially computing a single relation
corresponding to a and b. Compared to the time required to compute
CI(A) the time required to find these two extra relations is negligible.
Hence, solving any instance of the discrete logarithm problem is rel-
atively easy once we have computed CI(A). See [17] for more details
and computational results.

5. The DLP for arbitrary CI(Ay)

In this section we generalize the result from [15]. We show that given
the conductor f and its prime factorization one can reduce the DLP
in an arbitrary CI(Ayf) to the DLP in various smaller groups. More
precisely, we first show that the computation of discrete logarithms in
Cl(Ay) can be reduced to the computation of discrete logarithms in
the class group CI(A;) of the maximal order and the computation of
discrete logarithms in Ker(¢5l1). Furthermore, we show that the latter
problem boils down to the computation of discrete logarithms in a small
number of finite fields.

It should be noted that our method here is in essence a special case
of the more general methods employed by Cohen et al. to compute
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discrete logarithms in ray class groups [5]. The class group of a non-
maximal order in any number field, not only degree 2, can be viewed
as a ray class group of the maximal order, where the modulus is simply
an integer, the conductor of the non-maximal order. Our exposition
here is a reformulation of these results in terms of the simpler, special
case of non-maximal orders using the language of [15]. In addition, we
prove that the reduction of the DLP in CI(Af) to computing discrete
logarithm computations in CI(A;) and a small number of finite fields
is of polynomial complexity.

We start with an algorithm which reduces the DLP in CI(Ay) to
the DLP in CI(A;) and Ker(dg;). Since the map v : (Oa,/fOn,)* —
Ker(¢g;) given in Proposition 3 induces the isomorphism Ker(¢g;) =
(Oa,/fOA)*/Im((Z]fZ)*), we will reduce the latter DLP to compu-
tations in (Oa,/fOa,)*. Thus, our algorithm makes use of the follow-
ing two methods:

— DLPinCl(&,2)
Accepts two reduced Op,-ideals &,% as input and returns =z € Z
with 0 < z < h(A) such that &* ~ 2, or x = —1 if no such z
exists.

— DLPinKerphi(y, o, |Ker(¢;)|)
Accepts two generator representations v, « of classes in Ker(qﬁall)
such that [y],[a] € (Oa,/fOa,)* as input and returns z € Z with
0 < z < |Ker(¢g;)| such that 9([y])® = %([a]) in Ker(¢g,), or
z = —1 if no such z exists.

Furthermore, we assume that h(A;) is known. This is no practical
restriction, since the best currently known algorithm [16], as sketched
in Section 4, needs to compute (A1) and the group structure of CI1(A1)
before the actual DL-computation starts. Secondly, if there were any
other algorithm DLPinCl with the above properties, then one could
compute h(A;) as follows:

. * h*
1. Use [16, Algorithm 3.2, p.33] to compute h* € R, where % <

h(A1) < h*. This algorithm runs in polynomial time assuming the
Extended Riemann Hypothesis (ERH).

2. Compute an arbitrary Oa,-Ideal & # Oa,. Set z' = [h*] and
compute z <DLPinCl(&, &*'). Then

h(A1):{Z’ ifz=0

— x, otherwise
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Proof. We have ' =z (mod h(A;)) and hence z' — z = kh(A;)
for some k € Z. We will derive bounds for k£ to show that only
k=1,or k=2if x =0, is possible.

Assume z = 0. Then =’ = kh(A;) and 2’ = [h*] > h* > h(A;)
implies that k& > 1. On the other hand, we have z' = [h*] <
h*+1 < 2h(A1) +1 and hence kh(A;1) < 2h(A1) + 1. Therefore we
have k < 2+ @ < 3, which implies k = 2.

Now assume z > 0. From z’ = [h*] > h* > h(A1) and z < h(Aq) it
follows that ' —x = kh(A1) > 0, which implies £ > 1. Furthermore

we have
b= g —z [h] -z < h*+1—-=xz
h(A1)  h(A;) h(A1)
2h(A1)+1—$ 1—=z
=2+ <2,
h(A1) h(A1) ~
which shows k£ = 1. O

Thus, assuming ERH, it is possible to reduce the computation of h(A;)
to DLPinCl in polynomial time and our assumption of the prior knowl-
edge of h(A1) is not a restriction if we assume that we can compute
discrete logarithms in CI(A1).

Now we present our algorithm which reduces the DLP in CI(Ay) to
the DLP in CI(A;) and Ker(¢g; ).

Proof (correctness of ReduceDLP). Since the conductor f is known,
one can compute & = ¢} (g),2 = ¢ (a) € CI(A;) and the discrete
logarithm z1 using DLPinCL. If y = —1, then there is no discrete
logarithm in CI(A;). Since ¢g; : Cl(Ay) — CI(A;) is a surjective
homomorphism, this would imply that the DLP in CI(Ay) has no
solution either, and we return —1 in this case. Otherwise, we have
r =21 (mod h(Al)), i.e.,

wzc-h(Al)—i-xl, (6)

for some ¢ € Z. We assume that (A7) is known, so it remains to show
how to compute ¢ such that 0 < z < h(A;) = h(A1)|Ker(¢;)|- Since
0 <z < h(Ay), we see that 0 < ¢ < |Ker(¢5l1)|

Since &*1 ~ 2 and hence A/B*"1 ~ Oa,, we have (2A/B"1) ~
a/g™ € Ker(¢g,) and one may use Std2Gen (Algorithm 1) to compute
a generator representation a of the class of p(aOa,) ~ a/g*. In a
similar fashion, we have gh(®1) ¢ Ker(qﬁall) and one may compute a
generator representation «y such that p(yOa,) ~ g"(21) Now we solve
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Algorithm 2 ReduceDLP
Input: Two reduced Oa,-ideals g,a, the conductor f, the class

number h(A;), and the order of the kernel |Ker(dg) =

I _ (&/p)
[O*AI:O*Af] Hp\f <1 p )

Output: The discrete logarithm xz, such that g* ~ a, with 0 < z <
h(Ay¢), or z = —1, if no such x exists.

{Compute DL in CI(A;)}
& <+ GoToMaxOrder(g, f)
A «+GoToMaxOrder(a, f)
21 «DLPinCI(&, 2A)
if 1 = —1 then
return(—1)
end if
{Compute DL in (Oa,/fOna,)*}
a «Std2Gen(a/g*, f)
7y +Std2Gen(g"(A1), f)
¢ <-DLPinKerphi(y, a, |Ker (¢, )|)
if ¢ = —1 then
return(—1)
end if
{Combine partial results to get DL in CI(Af?)}
x4 c-h(A) 4+
return(z)

the DLP in Ker(¢g;), i.e., we compute c, such that 9([y])¢ = 9([e]),
with 0 < ¢ < |Ker(¢g;)|-

If such a ¢ does not exist, then there is no solution to (6) for the
DLP in CI(Af?) and we return —1. Assume now that such a c exists.
Then we have ¥([7])¢ = ¥([a]), or equivalently ¢(v°Oa,) ~ ¢(aOa,).
Therefore

gh(A1)-c ~ a/gwl ~ ngan (7

)
and by equating exponents we obtain z = c:h(A1)+z1 (mod h(Ay)). O

PROPOSITION 5. Given the conductor f, the class number h(A1) and
the order of the kernel |Ker(¢g, )| one can reduce the DLP in Cl(Ay)
in O(log(|A|)3) bit-operations to the DLP in Cl(A1) and Ker(¢g;)-
Proof. GoToMaxOrder and Std2Gen both need O(log(|Af|)?) bit-
operations. Thus the dominating operations are the exponentiations
in CI(Ay). Since ideal multiplication and reduction in quadratic orders
both have quadratic run-time [2], the result follows. O
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Thus, in order to compute discrete logarithms in CI(Ay), we need
efficient algorithms for computing discrete logarithms in CI(A;) and
Ker(¢g;). The subexponential algorithm outlined in Section 4 is the
most efficient algorithm known for computing discrete logarithms in
Cl(A1). We now consider the DLP in Ker(¢5;) = (O, /fOna,)*/Im((Z/ fZ)¥)
more closely.

By the Chinese Remainder Theorem (see, for example, [20, p.11]),
the DLP in (Oa, /fOa,)*/Im((Z/ fZ)*) boils down to DLPs in (Oa,/pi'On, )" /Im((Z/p{Z)*)
for prime powers p{’*, where f = []p;’. Furthermore, this problem can
be efficiently reduced to the prime case (Oa,/piOa,)" /Im(F, ). We
give an algorithm (ReducePe2P) for this reduction, assuming that the
following algorithm is available:

— DLPinOmodpO(y, )
Accepts two elements v, € (Oa, /pOa,)* as input and returns
T € Z with 0 <z < [(Oa,/pOa,)*/Im(F,)| such that [y]* = [a]
in (Oa, /pOn,)*/Im(F},), or x = —1 if no such z exists.

Proof (correctness of ReducePe2P). Let ny = |(Oa, /pOa,)*/Im(F,)| =

(p—(A) . Then it is easy to show that n = | (Oa, /p*Oa,)" /Im((Z/p*L)")| =

pe_ln’l. This shows the correctness of n1 and ng such that n = ny - ns.

Since ged(ng,ne) = 1, we can compute z modulo n; and no, and in
the end combine the partial results z; = ¢ (mod n1) and zo = =
(mod ng) using the Chinese Remainder Theorem. The correctness of
the for-loop follows from the presentation of the algorithm in in [29,
Algorithm 3.63, p.108]. Instead of using the Baby-Step Giant-Step al-
gorithm, we compute [; (mod |[(Oa,/pOAa,)*|) using DLPinOmodpO.
If the discrete logarithm x modulo n;, or the discrete logarithm in a
p-order subgroup during the computation of z, does not exist, then the
entire DLP is unsolvable and we return —1. O

Excluding the calls to DLPinOmodpO, the exponentiations are the
dominating operations. Thus we obtain:

PROPOSITION 6. The DLP in (Oa,/p°Ona,)" /Im((Z/p°Z)*) can be
reduced in O(e-(log p®)?) bit-operations to 2e DL-computations in (On,/pOn,)* [ Im(IFy).
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Algorithm 3 ReducePe2P

Input: Two elements v, € (Oa, /p*Oa,)".

Output: The discrete

logarithm z such that [v]

T

Al

[@] in (Oa,/p*Oa,)* JIm(Z/pZ)*)] with 0 < =z
[(Oa,/p¢OA,)" [Im((Z[p°Z)*)|, or = —1 if no such z exists.
{Initialize n1,n2 = p* such that n = ning = |(Oa,/p°Oa,)" | and

ged(ng,ng) = 1}

if (%) =0 then
ny <1
k+e

else
me (= (3))
k+—e—1

end if

N9 (—pk

N4 N1 N9

{Compute z1 =z (mod n1)}
z1 <DLPinOmodpO(y, a)

if 1 = —1 then
return(—1)

end if

z1 < 21 (mod nq)

{Compute 5 = z (mod ny), where x5 = lo + l1p + --- + lx_1p*~

and 0 <; < p}
,3<—(9A1

¥ < /P

171(—0
fori=0tok—1do

1

B+ IB,yli—lpz_l ' (mod p¢Oa,)
o (ozﬂfl)"/pwr (mod p¢Oa,)

l; «+~DLPinOmodpO(7, @)

if I, = —1 then
return(—1)
end if

l; < I; (mod p) {, where 0 < I; < p}

end for

To <+ lo+lip+ 12p2 + -+ lkflpkfl
Compute z using the CRT, such that 0 < z <n, z =21 (mod n1)

and £ = z2 (mod ny)
return(z)
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COROLLARY 1. Ife = O((logp)*) for some a = O(1), then the DLP
in (O, /p¢Oa,)" JIm((Z]p°Z)*) can be reduced in polynomial time (in
logp) to the DLP in (Oa, /pOa,)*/Im(F;).

Using ReduceDLP and ReducePe2P allows us to reduce the DLP
in Cl(Ay) to DLPs in CI(A1) and (Op, /pOn,)*/Im(F,). As shown in
(15, 14], (O, /pOa,)* is isomorphic to either F; x ) or [, , depending
how p splits in Oa,. This immediately leads to the central result of this
section.

THEOREM 1. If the prime factorization of the conductor f = Hle Pyt
is known and e; = O((log p;)®) for some a = O(1) then one can reduce
the discrete logarithm problem in Cl(Ay) in polynomial time (inlog Ay)
to the computation of logarithms in Cl(A1) and the following groups

(1<i<k):
F;,, if (2) € {0,1}
Fo, if =-1.

Proof. If the conductor f and its prime factorization are known,
then one can use ReduceDLP (Algorithm 2) to reduce the DLP in
CI(Ay) to the DLP in CI(A;) and Ker(¢g;). By Proposition 5 this
is possible in polynomial time in log A;. By the Chinese Remainder
Theorem (using the known factorization of f) the DLP in Ker(¢,;) =
(Oa,/fOA)*/Im((Z] fZ)*) is nothing more than the DLP in groups of
the form (Oa, /p;*Ona,)*/Im((Z/p;'Z)*), which can, using ReducePe2P
(Algorithm 3) and Corollary 1, be reduced in polynomial time (in log p;)
to the DLP in (Oa,/piOa,)*/Im(F,, ), because e; is assumed to be
polynomial in log p;.

It remains to show how one reduces the discrete logarithm problem
in (Oa,/pOa,)*/Im(F;) to discrete logarithm problems in Fj or F,.
Suppose we have two representatives 7y, @ of classes in (Oa,/pOa,)*
for which we want to compute the discrete logarithm ¢ such that [y]¢ =
[a] in (Oa,/pOa,)*/Im(Fy). In the inert case (A1/p) = —1, where
(Oa,/pOA,)* = F2, we have (Oa, /pOa,)"/Im(F;) = Foo /ITm(Fy). It
is well-known that there always exists a surjective homomorphism from
Fy2 to . /Im(Fy). Thus, we first solve the DLP 7 =a (mod pOx,)
by simply solving the corresponding DLP in IB‘;Q . Taking ¢ = ¢/ mod (p+
1) yields the required solution to the DLP [y]° = [a] in (Oa, /pOa,)*/Im(F,).

We now restrict our attention to the split case (A1/p) = 1, where
we have (Oa,/pOa,)* = F; x F;. The element v = (x1,1) maps to
(r1 mod p,y1 mod p) € F; x F,, and similarly @ = (z2,y2) maps to
(z2 mod p,y2 mod p). The DLP in (On, /pOa,)*/Im(F;) becomes

(z1,91)° = Uz2,92) (in F, x Fy)

Ay
pi
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which in turn yields the simultaneous DLP’s
z{ =lzy (mod p), yi=lys (modp) .

Since these two DLP’s must be solved for the same ¢ and I, we can
combine them and obtain the single DLP in F)

() =) tmotn

from which we can find the desired value of c.

As noted in [11], this simple strategy can be used to improve the
general maps from [15, 14]; it is shown that in this case there not only
exists a surjective homomorphism F; x F; — Ker(¢g;), but even an

efficiently computable isomorphism F; = Ker(qﬁall). O

Note that the central result of [15] now is nothing more than an
immediate corollary. The proof of Theorem 1 also describes an al-
gorithm for computing discrete logarithms in (Oa,/pOa,)*/Im(F;)
(DLPinOmodpO).

5.1. EXAMPLE

We illustrate the reduction of discrete logarithm computations in CI(A )
via a small example. Suppose A; = —1019, f =23, and Ay = Af?=
—539051. In this case, both CI(Af) and CI(A,) are cyclic with h(A;) =
13 and h(Ay) = h(A1)(23—1) = 286. The equivalence class represented
by the reduced ideal

7+V/-539051,, _

=157 + —
g + 5

(15’__7)
generates Cl(Ay).

Suppose we wish to compute the discrete logarithm of [a] with
respect to the base [g] in CI(Ay), where

9+ v/—539051 7
2

a=11Z + =(11,9) .
That is, we want to find z such that g* ~ a. Since g generates CI(Ay),
we know that such an z exists. Following ReduceDLP (Algorithm 2), we
first compute [&] = [ (9)] and [2] = [¢; ()], and solve the discrete
logarithm problem

&* ~ 2
in CI(A1). We have & = 15Z + V1007 = (15,1), 2 = (11,9), and
we easily compute z1 = 9.
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At this point we know that z has the form z = c-h(A1)+z1 = 13¢+9,
and it remains to compute c. Again following ReduceDLP (Algorithm 2),
we compute generator representations «,<y of [a,[y] € (Oa,/fOA,)*
such that ¥([a]) = [a/g"'] and ¥([y]) = [¢"?V)]. Following Std2Gen
(Algorithm 1), we first compute

b~a/g” ~a/g’ = (311,277)

and
¢ ~ gMB1) 13 = (297,295) .

To find o and v we compute the principal ideals B = ¢~!(b) and
¢ = ¢~ !(c), and reduce them while simultaneously computing their
modulo fOa, reduced generators, which we take as o and . We obtain
B = (311,—15) = (a) and € = (297, —13) = (y) where

a=-84+1lw, v=-T+1lw

and w = V1019 ;1019.

To compute ¢, we need to solve the discrete logarithm problem

M =la] (inKer(égy) = (Oa,/fOa,) [ Tm(Z/Z)")) -

For this example, we have (A;/f) = (—1019/23) = 1, and thus (Oa, /fOa,)* =~
F55 x F35 by [15, Lemma 8]. Since w = 14 (mod 23) and @ = 10
(mod 23), we obtain

v+ (=7 + lw mod 23, -7 + 1w mod 23) = (7,3) € 33 x F,
and
a— (—8 4+ 1w mod 23, -8 + 1w mod 23) = (6,2) € F53 x F35 .
Since Ker(¢g;) = (F; x F})/Im(F;), we need to find ¢ by solving the
discrete logarithm problem (7, 3)¢ = [(6, 2) in F53 x5, for every [ € F;.
This yields
7°=6l (mod23), 3°=2 (mod 23),

and we combine these two discrete logarithm problems to obtain one
discrete logarithm problem in F3, :

(7/3)¢ =(6/2) (mod 23) - 10°=3 (mod 23) .

Solving yields ¢ = 20, and finally z = 13 - 20 + 9 = 269. Tt is easy to
verify that z is indeed the desired discrete logarithm: simply compute
the reduced ideal g?%° and verify that it is equal to the reduced ideal a.
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6. Towards practical non-interactive cryptosystems

In this section we apply (parts of) the result from Section 5 concern-
ing the computation of discrete logarithms to set up a non-interactive
cryptosystem.

Before we explain the proposed setup we recall some more pre-
liminaries concerning imaginary quadratic class groups. Note that for
fundamental discriminants, by the Cohen-Lenstra heuristics [6] the
probability that the odd part of the class group is cyclic is approxi-
mately 0.977575. Thus, for a prime discriminant —A; = 3 (mod 4)
the probability that CI(A;) is cyclic is more than 0.97. Indeed, in
practice it is no problem to find a fundamental discriminant A; such
that the class group class group CI(A;) of the maximal order is cyclic.
Furthermore, given such a maximal order, it is easy to find a prime
conductor p such that CI(A,) is also cyclic.

PROPOSITION 7. Let g =3 (mod 4), Ay = —q and let Cl(Ay) be
cyclic with class number h(A1). Furthermore let p be a prime such that

ged (p— (Ar/p), h(A1)) =1 .

Then CIl(Ap) is cyclic.

Proof. By Proposition 2 we know that ¢; : CI(A,) — Cl(Aq) is a
surjective homomorphism, and we have Cl(A,) ~ Cl(A,)/Ker(¢;) X
Ker(¢g; ). Since Cl(A,)/Ker(¢g;) ~ CI(A;) is assumed to be cyclic,
if we show that Ker(d)all) is cyclic, then by elementary group theory
CIl(Ap), the direct product of two cyclic groups of relatively prime order
(also by assumption), is also cyclic.

We know that Ker(d;) = (Oa,/pOn,)* /Im(F;) (see Remark 1),
and by [15, Lemma 8] (Oa,/pOa,)* is isomorphic to either F; x F;

~

or I, In the latter case, since I}, is cyclic, (Oa,/pOa,)*/Im(F;) =
o /Im(F,) must also be cyclic, since it is a factor group of a cyclic
group.

Suppose now that (Oa, /pOa,)* = F; x[F;. Then, we have Ker(ég;)
(F, x F;)/Im(F,) where

~

It is easy to show that (F x Fy)/Im(F;) = F; under the map z

(2, 1) Im(F3). O

Thus, it is possible to set up a non-interactive scheme in the spirit
of Maurer and Yacobi in a cyclic group CIl(A,), where the embed-
ding of some (arbitrarily large) identity IDp into a group element is
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straightforward. One has only to take the largest prime pp < IDp
which satisfies (A,/pp) = 1, compute the prime ideal pp lying over
pp, and reduce this ideal. The computation of the discrete logarithm
can be performed in CI(A;) and the finite field F; or F», depending
on (A1/p), using the reduction described in Section 5 by anyone who
knows the factorization of A,.

Before we explain our system setup we list the crucial properties:

REQUIRED PROPERTIES:

1. The discrete logarithm problem (DLP) in CI(A,) without knowing
the factorization of A, = A;p? is infeasible. To determine bounds
for A1 and p, we make use of the heuristic model from [12], which
is a refinement of Lenstra and Verheul’s approach [21], since it
also takes into account the asymptotically vanishing o(1)-part in
subexponential algorithms. We will now derive bounds for the pa-
rameters such that an attacker would need to spend about 90, 000
MIPS years to break the system. This approximately amounts to a
ten-fold higher workload than the recent factorization of RSA155
and hence corresponds to the very minimum requirements. The esti-
mates in [12, Table 3] state that A, should have at least 576,667, 423
bits to prevent factoring A, with the GNFS, factoring A, with
ECM and computing discrete logarithms in CI(Ap) with the SIQS-
analogue [16], respectively.

1.1 A, is large enough that using the subexponential algorithm
from [17] to directly compute discrete logarithms in CI(A,) is
infeasible. A, > 2423 implies an expected workload of more
than 90,000 MIPS years.

1.2 A, cannot be factored to reduce the DLP to DLPs in CI(A,)

and I}, (or F, ).
1.2.1 A, is large enough so that the Number Field Sieve would
need more than 90,000 MIPS years. This yields A, > 2°76.

1.2.2 A; and p are large enough that it would take more than
90,000 MIPS years to find them with the Elliptic Curve
Method. This implies A, p > 2222,

2. A1,p must be small enough to enable the KGC to compute dis-
crete logarithms in C1(A;) and F;, using subexponential algorithms.
A1, p < 2390 geems to be feasible.

3. CIl(A,) must be cyclic.
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It is easy to see that the following setup satisfies all above require-
ments.

SYSTEM SETUP:

1. The KGC randomly chooses a prime ¢ = 3 (mod 4), ¢ > 2260,
sets A; = —q and computes h(A;) and the group structure of
CI(A1) with the algorithm from [16]. The Cohen-Lenstra heuristics
[6] suggest that CI(A1) is cyclic with probability > 0.97. If CI(A;)
is not cyclic, the KGC selects another prime ¢ until it is cyclic.

2. The KGC chooses a prime p > 2260 with (A;/p) = 1 and ged(p —
1,h(A1) = 1 such that the SNFS can be applied as in [38], and
computes A, = A;p?. The ged condition ensures that Cl(A,) is
cyclic.

3. The KGC computes a generator g of Cli(A,) and publishes it to-
gether with A,.

Given a generator & of CI(A1), which the KGC can easily obtain
during the computation of CI(A1) [16, Algorithm 6.1], it is also easy in
practice to find a generator g of Ci(A,) with the additional property
that ¢ (g) = ®. The KGC repeatedly selects random values of o €
Oa, and takes the first g = ¢(a®) such that gh(Ae)/di Op, for any
positive divisor d; of h(A,). Although h(A,) is approximately as large
as y/|Apl|, in practice it has sufficiently many small factors that this
condition can be verified with high probability.

USER REGISTRATION:

1. Bob requests the public key b corresponding to his identity IDp at
the KGC.

2. The KGC verifies Bob’s identity, for example, using a passport, and
starts with the key generation.

3. The KGC computes the 128-bit hash id = h(IDp) using, for ex-
ample, MD5 [33], of Bob’s identity and embeds id into a group
element of Cl(A,) by taking the largest prime pp < id, for which

(Ap/pp) = 1 and computing the prime ideal b = ppZ + bB% ”Ap,
where bp is the uniquely determined square root of A, mod 4pp

with 0 < bp < pp. Note that b is already reduced, since /|Ap| >
2128 > pp. If the KGC recognizes that b is already assigned to
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another user it will ask Bob to choose another identity, for example,
his postal address.

4. Finally, the KGC computes the discrete logarithm b such that g® ~
b using the secret knowledge of the conductor p and the reduction
procedure described in the Section 5, and returns b to Bob.

As soon as all users are registered this way the KGC can destroy the
factorization of A, and cease to exist. The users can obtain any other
user’s authentic public key simply by hashing that user’s identity and
computing the largest prime ideal whose norm is less than the hash
value. Each user has a public/private key-pair (a,a) with a ~ g%, so
discrete logarithm-based protocols such as Diffie-Hellman or ElGamal
can be directly applied in the class group CI(Ap).

7. Practical experience

7.1. EXAMPLE 1

As an example of setting up our system, we chose two primes ¢ and p
as described above:

g = 3057167496049883408581292045791645374701946164403139530/
7920624947349951053530183
(265 bits)

p = 2165979040294028473418410443435832906413439949216302368 /
39089285875389553863294923
(267 bits) .

The KGC then takes

Ay = —q
A, = —gp* (798 bits)

as its maximal and non-maximal orders, respectively. Using a parallel
version of the algorithm from [16] implemented in LiDIA [22] and PVM
[8], it computes the structure of CI(A;) and a generator &. In this case
Cl(A) is cyclic of order

h(A1) = 2224472364717780126872155452721624147917 |

and the ideal
& =(2,1)
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is a generator. Using a cluster of 16 Pentium-II1/550 processors run-
ning LINUX, this computation took 2.27 days. The equivalence class
represented by

g = (123614767300586871246114600649731453618113728680121434/
5662161494452372843312257698827896153861395209330131318/
666286517,
3939011104523993573270337525530958460443058813934758269/
9326069610901536714965181198503279478442916857520471201/
0732255)

generates Cl(A,).

The parallelization of the class group algorithm from [16] is fairly
straightforward. Since the relation generation stage of the algorithm is
based closely on the SIQS factoring algorithm, the well-known paral-
lelization techniques of that algorithm can be applied almost directly.
In addition, a large portion of the linear algebra can be done in parallel,
and in the end, if the number of processors is increased by a factor of
n, we expect to achieve a speed-up of almost n. Details will be given
in a forthcoming paper.

Now, suppose the users Alice (ID4 = huehnlein@secunet.de), Bob
(IDp = mjjacobs@cacr.math.uwaterloo.ca), and Carl (IDc = weber-
@mfh-iserlohn.de) wish to register. Alice’s public key, a, is computed
by finding p 4, the largest prime less than the 128-bit MD5 hash value
of ID 4 with (Ap/pa) = 1, and taking the corresponding prime ideal in
(’)Ap. We obtain

MD5(ID,4) = 201149154589345561189246215978625621230,
DA 201149154589345561189246215978625621213

a = (201149154589345561189246215978625621213,
98688405189933472976874523210781312655) .

We find Bob and Carl’s public keys in the same manner:

MD5(IDp) = 185069019259970008578381740973744250599,
PB 185069019259970008578381740973744250567
b = (185069019259970008578381740973744250567,
180969848314739057306605962939756582495)
MD5(ID¢) = 282020054827252238756640548852860917797,
pc = 282020054827252238756640548852860917779
¢ = (282020054827252238756640548852860917779,
233511465074997733088279729809348692979) .
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Note that anyone can compute these public keys given only Alice, Bob,
and Carl’s email addresses and the public system information A,.

Next, the KGC computes Alice, Bob, and Carl’s private keys, i.e.
the discrete logarithms a, b, and ¢ such that g® ~ a, g® ~ b, and g° ~ fc
in Oa,.- The KGC knows p, the conductor of Oa,, so it can use the
method described in Section 5 to compute these discrete logarithms.
Using the algorithm from [17] to compute the discrete logarithms in
CIl(A;) and that from [38] to compute the discrete logarithms in F;,
we obtain

a = 1108228913334518377434054522555907589914018044575075203/
8524348119082017895936710359600058901396679232272945862/
1035164570

b = 3003480562979666120080073706524077910795497960511740471/
6337520361425644457779075116232216932978464156827037738/
9543408800

¢ = 2745078930329044874097630185924164819719438358865808856/
3627735994430126325251998111722295801030917594158201110/
8170580376 .

Since the information used to compute CI(A;) and & has been kept
by the KGC, the computation of the discrete logarithms in CI(A;) is
very fast in comparison to the initial setup of the system. In this case
the discrete logarithm computations in CI(A;) for a, b, and ¢ each
took only about 3.10 minutes each using the Pentium cluster. As in
the computation of CI(A;), increasing the number of machines by a
factor of n will yield a speed-up of almost n, so these computations
are completely feasible for a KGC with even rather modest amounts of
computing resources.

Using a single 500 Mhz Pentium I1I, the computation of the discrete
logarithms in F each took about 2.3 hours. However, most of the com-
putation of the discrete logarithms in Iy is also trivially parallelizable,
resulting in a linear speed-up for all stages except the linear algebra.

7.2. EXAMPLE 2

Due to recent advances in the efficiency of the elliptic curve factoring
method, the parameters used in the previous example are on the border-
line of security. Computing the structure of the class group, and hence
discrete logarithms, in quadratic orders with arbitrary discriminants
of more than 265 bits is quite difficult. Fortunately, it is possible to
choose the prime ¢ in such a way that this computation is much easier
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that that for an arbitrary discriminant. As pointed out in [16], if the
discriminant A; is such that (A;/l) =1 for many small primes [, then
computing the class group is significantly easier in practice. Such special
discriminants can be generated easily using numerical sieving devices
such as the MSSU [24].

Thus, for our second example, we chose two primes g and p as
described above:

g = 4888635408688512426296260618671498735871596404793476349/
0607621218132307601660728438392515591
(305 bits)

p = 3047718323340697663928401918879192361689531023359999999 /
9999999999999999999999999999999999987
(304 bits) .

In this case, the prime ¢ was found using the MSSU and the method

describe in [18], and has the additional property that (—¢/l) = 1 for
all primes [ < 389. The KGC then takes

Zkl = —q
A, = —gp* (913 bits)
as its maximal and non-maximal orders, respectively. Again, using a

parallel version of the algorithm from [16] it computes the structure of
Cl(A1) and a generator &. In this case CI(A;) is cyclic of order

h(A1) = 24867567687035443080005204983860780774718071403

and the ideal
& =(2,1)

is a generator. Using the Pentium cluster, this computation took 2.87
days. The equivalence class represented by

g = (774973249054210487087262168580028946305397762930459852/
3969468387224151041578132740295101542448943011314827539/
0152822738457063050752368204,
2884013129991658377584730954547970251314084045462303210/
8878544708721954266311440661112152691706666261864358048 /
734229871562742225696933193)

generates Cl(Ap).
Now, suppose as before the users Alice (I D4 = huehnlein@secunet.de),
Bob (IDp = mjjacobs@cacr.math.uwaterloo.ca), and Carl (ID¢ =
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weber@mfh-iserlohn.de) wish to register. We obtain the following public
keys:
a = (201149154589345561189246215978625620949,
79174889249695020620380553564943557169),
b = (185069019259970008578381740973744250591,
92632418736137979645746252873831476417),
¢ = (282020054827252238756640548852860917733,
48832595588063748011907744520095764189) .

The corresponding private keys, i.e., the discrete logarithms a, b, and

c such that g ~ a, g ~ b, and g ~ ¢ in Oa,, are

a = 3558069550441514505254102416234912525954664070682785856 /
0528277218749067855872124189387021930222388279928450030/
2594591083940809347500040676

b = 5543972396480333881647659698051971692139310970265696944/
0584647336265181075890082703252771538754844563685332275/
6887714459988518151646076759

¢ = 6246758088397212160736419578706564098439657049399956995/
8161172696855955627013148417274624063368718599432413130/
278501917860454254748981955 .

The discrete logarithm computations in CI(A1) for a, b, and ¢ each
took only about 3.30 minutes on the Pentium cluster, and those in F;
each took about 14 hours each on a single 500 Mhz Pentium III. Thus,
although the initial start-up costs are higher, it is still feasible to set up
our non-interactive system with sufficiently large parameters to provide
reasonable security.
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