
How to Use ISO/IEC 24727-3 with Arbitrary
Smart Cards

Detlef Hühnlein1 and Manuel Bach2

1 secunet Security Networks AG,
Sudetenstraße 16, 96247 Michelau, Germany

detlef.huehnlein@secunet.com
2 Federal Office for Information Security,

Godesberger Allee 185-189, D-53175 Bonn, Germany
manuel.bach@bsi.bund.de

Abstract. The forthcoming ISO/IEC 24727 series of standards defines
application programming interfaces for smart cards and is expected to pro-
vide a major contribution to the global interoperability of smart cards and
card-applications. However it assumes in part 2 [8] that certain informa-
tion concerning the capabilities of the card and its (cryptographic) appli-
cations is stored on the card itself. As already issued smart cards do not
provide the required structures, the significance of ISO/IEC 24727 for bil-
lions (see [5]) of “legacy cards” seems to be questionable. In order to over-
come this problem, the present paper introduces an alternative approach,
which does not require any specific information on the card but provides
the information which is necessary to map generic requests to card-specific
APDUs to the middleware in form of XML-based CardInfo-files.

1 Introduction and Motivation

The forthcoming ISO/IEC 24727 series of standards [7,8,9,10] defines applica-
tion programming interfaces for smart cards. As this standard – unlike existing
cryptographic APIs like PKCS #11 [20] – allows a fine granular access to card-
applications and covers aspects of card-application management, it promises to
provide a major contribution to the global interoperability of smart cards and
card applications. In this architecture (see figure 1) a client-application uses a
card-application via two layers (the Service Access Layer defined in [9] and the
Generic Card Access Layer defined in [8]). For this purpose the client-application
sends some Action Request to the Service Access Layer, which in turn sends a
Generic Request to the Generic Card Access Layer. This layer “knows” about
the specific capabilities of the card and finally sends a Specific Request to the
card-application, which performs some operation and gives back the response
through the different layers.

The development of the ISO/IEC 24727 standards was stimulated by the
US Government Smartcard Interoperability Specification [17], which defines a
virtual card edge interface, which can be supported by cards with a file sys-
tem according to [12] as well as by Java-cards [16]. In a similar fashion, the

C. Lambrinoudakis, G. Pernul, A.M. Tjoa (Eds.): TrustBus 2007, LNCS 4657, pp. 280–289, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

How to Use ISO/IEC 24727-3 with Arbitrary Smart Cards 281

Card Application

Specific Interface (Out of Scope)

Generic Card Access Layer

Generic Card Interface (ISO/IEC 24727-2)

Service Access Layer

Service Interface (ISO/IEC 24727-3)

Action

Request

Generic

Request

Specific

Request

Specific

Response

Generic

Response

Action

Response

Client Application

Fig. 1. ISO/IEC 24727 Architecture

Generic Card Interface [8] defines a subset of functions standardized in [12,14]
and two files, which may contain further information about the capability of the
present card. The Card Capability Description (CCD) tells the Generic Card
Access Layer what card applications and predefined Cryptographic Information
Application (CIA) profiles according to [11] are present on the card and how
some generic request can be mapped to a specific request for the given card. In
a similar fashion, the Application Capability Description (ACD) provides such
mapping information for application specific requests.

While this approach, just like the virtual card edge from [17], makes it possible
that cards with ISO-file system and Java-cards may be accessed using the same
interface, it has a major drawback, which seriously limits the applicability of it
in (current) practice.

The problem is that the ISO/IEC 24727-2 standard frankly assumes that the
card itself carries all information (i.e. CCD, ACD and CIA), which is necessary to
map some Action Request to the Specific Request for the present card (e.g. consist-
ing of appropriate APDU-sequences referencing a specific file or key on the card).

As the ISO/IEC 24727 series of standards is currently developed it is not
surprising that there are no issued cards yet, which comply to this standard and
provide the necessary CCD and ACD files. Furthermore, there seem to be very
few smart cards in the field, which internal structure is completely described by
an appropriate CIAInfo-structure according to [11]. This may in part be due
to the fact that this structure requires some additional storage on the card and
saving storage is still a concern – at least in large volume smart card projects.

282 D. Hühnlein and M. Bach

Because the card does not provide the required information, it is necessary
that the smart card middleware (i.e. some software between the client-application
and the card-application) is able to “recognize” a given card type and “knows”
how to map a generic call on the Service Interface to card-specific APDUs. The
naive but common way to realize this in practice is that the specific features and
personalization of some card type are directly coded into the smart card mid-
dleware. As this implies that the executable code of the middleware needs to be
changed if there are new card types which need to be supported, this clearly ren-
ders smart card interoperability more difficult and the maintainance of the smart
card middleware turns out to be a major cost factor, especially if the system is
to be evaluated according to Common Criteria [6]. Furthermore it is very hard
to successfully implement card-application management systems as the middle-
ware would need to be changed if there is a change in some card-application on a
supported card. While it is possible to choose a modular middleware design as in
[19,1,15] in which only a certain part of the middleware – the “card-provider” –
needs to be updated, the problem is not entirely solved as there are still changes
to the executable code, which would require some re-evaluation according to [6].

In order to overcome these problems, the present paper introduces an alter-
native to ISO/IEC 24727-2, in which the necessary information to map a generic
Action Request to a Specific Request for the present card (e.g. card-specific AP-
DUs) is provided to the middleware in form of an XML1-based configuration file
and hence it is not necessary to change the executable code of the middleware
but it is sufficient to provide a new CardInfo-file. This configuration file may
be viewed as an an off-card variant of the CCD-, ACD- and CIA-files which
otherwise would need to be present on the card itself.

The rest of the paper is structured as follows: Section 2 introduces an alter-
native to ISO/IEC 24727-2 and explains the major content of the CardInfo-files
as well as its use to recognize a card type and to map generic requests to card-
specific APDUs. We conclude this work in section 3 and sketch how our approach
may be embedded in a comprehensive framework for electronic identity cards [3]
as it is used for the implementation of the eCard-strategy of the German gov-
ernment.

2 A Generic Alternative to ISO/IEC 24727-2

In this section we present an alternative to ISO/IEC 24727-2, which allows to
use the Service Interface according to [9] with cards which do not provide CCD-,
ACD- and CIA-files and hence are not compliant to [8].

This section is structured as follows: In section 2.1 we will sketch the main
ideas of our approach in which the middleware is fed with so called CardInfo-
files, which describe how to recognize the card type and allow to translate generic

1 It would also be possible to use ASN.1-based CardInfo-files. As the files are not
supposed to be stored on the card, tools for handling XML-based data tend to be
more widespread than similar tools for ASN.1 and XML serves as basis for the
definition of web service interfaces, it seems to be the canonical choice here.

How to Use ISO/IEC 24727-3 with Arbitrary Smart Cards 283

requests to card-specific APDUs. How the middleware may recognize the card
type is explained in section 2.2. Section 2.3 sketches how the middleware is able
to perform the mapping from a generic request to card-specific APDUs. Section
2.4 explains the structure of the CardInfo-files, which are at the heart of our
approach, in more detail.

2.1 Outline of the Approach

As our aim is to support arbitrary cards via the generic Service Interface defined
in ISO/IEC 24727-3 [9], it is necessary that the middleware “knows” how to
perform the mapping from a generic request to card-specific APDUs. In order
to achieve this goal the middleware is fed with CardInfo-files which allow to
perform the following steps:

1. Recognition of the card type
As soon as the card is captured by an interface device, the middleware must
be able to “recognize” the type of the card in order to identify the appropriate
CardInfo-file which allows to perform the mapping of generic requests to
card-specific APDUs.

2. Mapping the generic requests to card-specific APDUs
When the client-application sends a generic Action Request to the Service
Interface the middleware must look into the appropriate CardInfo-file in
order to translate the generic request to card-specific APDUs.

These two steps are explained in the following subsections.

2.2 Recognition of the Card Type

In this step the middleware must be able to “recognize” the type of the presented
card in order to determine the applicable CardInfo-file. For every card type
there is a unique CardInfo-file, which contains a set of CharacteristicFeature-
elements which are used to recognize the type of a given card. A characteristic
feature is described by a pointer to a (part of a) file on the card and a reference
value, which is compared to the answer provided by the card. As depicted in
figure 2 the set of CardInfo-files accessible by the middleware is used to build
at runtime a “decision tree”, which is traversed upon reset of the card.

After the reset of the card the middleware reads the “application directory
file” (EF.DIR) at adress ’2F00’ and checks whether there is a match with one
or more CharacteristicFeature-elements given by the set of CardInfo-files.
As we assume in our simple example (which is currently the case in practice)
that the presence of certain card applications on a card uniquely determine
the card type (e.g. AID=’A0 00 00 03 08 00 00 10 00 01 00’ would make clear
that the card is a Personal Identity Verification (PIV) card [18] and AID=’4F 06
D2 76 00 00 01 02’ would make clear that the card is a German electronic Health

284 D. Hühnlein and M. Bach

Reset
ReadRecords

in EF.DIR

(2F00)

PIV (USA)

’
SMC (Germany)

eGK (Germany)

GET DATA

00CA 7F62

(CCD)

else

Tag ‚80‘=‚00‘

ECC (prCEN15480)

dDK (proprietary)

Tag ‚81‘=‚1‘
ISO 24727-2 (Profile 1)

Tag ‚81‘=‚0..1..0‘

ISO 24727-2 (Profile n)

Is there

EF.CIAInfo

(5032) and

EF.OD (5031)
ac. to 7816-15?

Is DF (5015) of

a certain

structure?
…

…

else

else

eCard (Austria)

Is there DF

(1FFF) and

DF (5015)?

Order is subject

to configuration

(ATR may help to

optimize card

recognition

procedure)

Order is subject

to configuration

(ATR may help to

optimize card

recognition

procedure)

inc. AID=’A0 00 00 03 08 00 00 10 00 01 00’

inc. AID=’4F 06 D2 76 00 00 01 03’

inc. AID=<to be defined>

inc. AID=’D0 40 00 00 17 00 10 01’

inc. AID=’4F 06 D2 76 00 00 01 02’

Fig. 2. An example for a decision tree to recognize the card type

Card (elektronische Gesundheitskarte, eGK) [4]) the recognition process would
already stop in an acceptable state in which the card type is uniquely determined.
If the analysis of EF.DIR in our example would not lead to a match, the next
request to the card would check whether the Card Capability Description (CCD)
is present at adress ’7F62’ and so on. This process will finally determine the card
type or end up with an error message which states that the presented card is not
among the supported card types determined by the CardInfo-files. Note that
the order of the calls to the card determines the efficiency of the recognition step
and hence should be optimized for a certain user environment such that card
types which are more likely to occur are tested first.

2.3 Mapping the Generic Requests to Card-Specific APDUs

As soon as middleware has determined the type of a card, it can use the infor-
mation provided in the CardInfo-file in order to map a generic Action Request
at the Service Interface according to [9] to a Specific Request (e.g. consisting of
card-specific APDUs) for the present card.

This step will be explained by a simple example as depicted in figure 3.

How to Use ISO/IEC 24727-3 with Arbitrary Smart Cards 285

CardInfo
CardInfo

…

…

Protocol

Algorithm

DID

Marker

ObjectIdentifier

CardAlgID

KeyRef AlgID

Client Application

Sign(DIDName,Message)

Service Interface (ISO/IEC24727-3)

Specific Interface (Out of Scope)

MSE(…,KeyRef ,AlgID)

DIDName

�

�

�

Fig. 3. Mapping of a generic request to card-specific APDUs

Suppose that a client-application wants to sign some message with a key
stored on the card. Then it would roughly2 invoke the Sign-function at the
Service Interface with the two parameters Message and DIDName. The parameter
DIDName is the logical name of a key-structure (called ”Differential-Identity”
(DID) in [9]), which is used for authentication and other cryptographic purposes.
A DID comprises at least the following information:

– DIDName – is the logical name of the DID.
– Protocol3 – specifies the cryptographic protocol, for which the DID can

be used in form of an object-identifier OID. This OID must be among the
algorithms supported by the card (see figure 3).

– Marker – may be
• a PIN / password
• a symmetric key
• an asymmetric key, which may be used to generate digital signatures
• a card-verifiable certificate

2 As [9] is card-application oriented it may be necessary to connect to a specific card-
application first.

3 In the current draft of [9] this parameter is called Authentication Protocol. As
a DID can also be used in other cryptographic primitives (e.g. for decryption or
signature generation) it would be advisable to change the name of this parameter to
Protocol.

286 D. Hühnlein and M. Bach

• a biometric image or template
• a pair of symmetric keys (one for encryption and one for message au-

thentication)
Typically a marker will be a reference to a key on a card (see figure 3).

In order to compute a digital signature the following steps are necessary:

1. Manage Security Environment (MSE)
In the first step the middleware will use the MSE command (see [12, Section
7.5.11] and [14, Section 10]) to prepare the card for the computation of a dig-
ital signature with a certain key (identified by a card-specific key reference,
KeyRef) and a certain algorithm (identified by a card-specific algorithm
identifier, AlgID).
As depicted in figure 3 the KeyRef is found in the Marker-element of the
DID referenced by DIDName. The AlgID is found by looking into the de-
scription of the algorithm with the same object-identifier as the Protocol
element in the DID referenced by DIDName.

2. PSO: Compute Digital Signature (PSO:Compute DS)
In the second step the middleware will call the Perform Security Operation:
Compute Digital Signature command (see [14, Section 11.7]) and send the
data to be signed (DTBS) to the card.

In this way the middleware is able to map all generic requests defined in [9]
to card-specific APDUs.

2.4 The Structure of the CardInfo-Files

At the heart of our approach are the CardInfo-files, which allow to recognize the
type of a given card (cf. section 2.2) and map generic requests to card-specific
APDUs (cf. section 2.3).

A CardInfo-file consists of the following four elements:

– CardType
– CardIdentification
– CardCapabilities
– ApplicationCapabilities

The main content of these elements is explained in the following. Full details
may be found in [3].

CardType. This element contains a unique identifier for the card-type and op-
tionally further useful information, like the name of the specification body or
issuer (e.g. “CEN” in the case of a European Citizen Card according to [2]), the
name of the card-type (e.g. ”European Citizen Card”), the version and date of
the specification and further references to specification documents (e.g. a URL
where the specification documents [2] of the European Citizen Card may be
downloaded).

How to Use ISO/IEC 24727-3 with Arbitrary Smart Cards 287

CardIdentification. This element is used to identify the card-type and an
individual card of this type. It consists of the following elements:

– ATR – may be used to specify a boolean mask of the ATR/ATS which is
specific for the card-type. This information may be used to determine an
appropriate starting point in the decision tree (cf. figure 2) which is traversed
within the card-recognition procedure (cf. section 2.2).

– CharacteristicFeature – contains a sequence of characteristic features
which are checked in order to recognize the card-type. A CharacteristicFea-
ture-element consists of a reference to a (part of a) file (FileRef) on the card
and a Value-element, against which the answers from the card are compared.
Note that the set of CharacteristicFeature-elements in all CardInfo-files
available to the middleware and their order determines the structure of the
decision tree (cf. figure 2).

– ICCSN – may contain a reference to a (part of a) file, which contains a unique
serial number of the card (e.g. an Integrated Chip Card Serial Number
(ICCSN) or a Primary Account Number (PAN)), which allows to distin-
guish individual cards of a given type.

CardCapabilities. This element contains information about the general capa-
bilities of the given card. It contains the following elements:

– ISO7816-4-CardCapabilities – contains information about the minimum
requirements concerning the basic capabilities of the card according to [12,
Section 8.1.1.2.7]. If the specification of the card-type does not define such
minimum requirements, this element may be omitted.

– ExtendedLength – possibly contains a pointer to a (part of a) file on the
card, which specifies the extended length supported by the card.

– CryptoCapabilities – contains information about the cryptographic capa-
bilities of the card. If there is a CIAInfo-file according to [11] on the card, which
completely describes the cryptographic capabilities and keys of the card, it is
sufficient to set the boolean element ISO7816-15-CompliantCard to TRUE. If
not this element contains the equivalent information. This means that it con-
tains information about the profiles and card flags according to [11] and the
supported algorithms of the card. This includes the object-identifier of the al-
gorithm and the card-specific algorithm-identifier, which are necessary to map
the generic requests to card-specific APDUs (cf. figure 3).

– BiometricCapabilities – may contain information about the biometric
capabilities of the card.

ApplicationCapabilities. This element contains information about the card-
applications available on the card. For every card-application this contains the
following information:

– ApplicationID – is a unique identifier of the card-application. This identifier
may be a registered card-application according to [13] or a unique value
which is defined by the creator of the CardInfo-file.

288 D. Hühnlein and M. Bach

– ApplicationName – may contain a user-friendly name of the card-application
which only serves for informational purposes.

– DocumentationReferences – may contain references to the specification of
the card-application.

– CardApplicationServiceSet – contains information about the services sup-
ported by the card-application, the respective access control information (cf.
[9, Section 5.4.3]) and optionally (a reference to) code to be executed if the
card is a Java Card [16].

– DIDInfo – contains for every Differential-Identity (DID) on the card the in-
formation which is necessary to map the generic requests to card-specific
APDUs (cf. section 2.3) together with the related access control informa-
tion. Given this access control information the middleware knows what kind
of authentication steps (using other Differential-Identities) are necessary to
access a particular DID.

– DataSetInfo – contains information about the data sets present on the
card and the related access control information. For a card with file system
according to [12] a data set is a directory file. A data set consists of a
sequence of information about data structures for interoperability (DSI) (cf.
[9, Section 8]) and associated access control information. A DSI is referenced
by a logical DSIName and contains a reference to a (part of a) file on the card
and optionally further information which describes the MIME-type and the
encoding of the stored data. This DSIDescriptionmay be used by a generic
client-application (card browser) to visualize arbitrary data stored on the
card.

3 Conclusion

In this paper we introduced a generic alternative for ISO/IEC 24727-2 [8] which
allows to use the Service Interface defined in ISO/IEC 24727-3 [9] with arbitrary
smart cards. While the Service Interface provides comprehensive functionality
for accessing card-applications, this interface alone is often not sufficient. In par-
ticular the experiences gathered in [3] suggest that it is beneficial to have a
related interface underneath these layers to access card terminals and another
interface above the ISO/IEC 24727-3-interface which supports services for iden-
tity management and advanced electronic signatures. While there have been first
steps towards standardizing an Interface Device API in [10] it remains to be seen,
whether the interfaces in the “Identity Layer” will be standardized within the
scope of ISO/IEC 24727 and/or CEN TS 15480.

References

1. German Signature Alliance. SigAll-API - Specification of the Application Program-
ming Interface to the Signature Card. Version 1.0 (2004)

2. Comité Européen de Normalisation (CEN). Identification card systems – European
Citizen Card. CEN proposed Standard prCEN15480 (Working Drafts) (2006)

How to Use ISO/IEC 24727-3 with Arbitrary Smart Cards 289

3. Federal Office for Information Security (Bundesamt für Sicherheit in der Infor-
mationstechnik). eCard-API-Framework (Part 1-6). Technical Directive (BSI-TR-
03112), Draft, A copy of the documents may be obtained from the authors (2007)

4. Gesellschaft für Telematikanwendungen der Gesundheitskarte (gematik). The Spec-
ification of the German electronic Health Card eHC – Part 2: Applications and
application related structures. Version 1.1.1, 2006-03-23, (2006), http://www.
gematik.de/upload/gematik eGK Specification Part2 e V1 1 1 516.pdf

5. IMS Research Group. The Worldwide Market for Smart Cards and Semicon-
ductors in Smart Cards–2006 edn. Research Report # IMS9654 (May 2006),
http://www.electronics.ca/reports/ic/smart_cards.html

6. ISO/IEC 15408: Information technology – security techniques – evaluation criteria
for it security (part 1-3). International Standard (2005)

7. ISO/IEC 24727-1: Identification cards – Integrated circuit cards programming in-
terfaces – Part 1: Architecture. Final Draft International Standard (2006-08-25)
(2006)

8. ISO/IEC 24727-2: Identification cards – Integrated circuit cards programming in-
terfaces – Part 2: Generic Card Interface. Final Committee Draft (2006-07-30)
(2006)

9. ISO/IEC 24727-3: Identification cards – Integrated circuit cards programming in-
terfaces – Part 3: Application programming interface. Committee Draft (2006-09-
07) (2006)

10. ISO/IEC 24727-4: Identification cards – Integrated circuit cards programming in-
terfaces – Part 4: API Administration. Working Draft (2006-06-26) (2006)

11. ISO/IEC 7816-15: Identification cards – Integrated circuit cards – Part 15: Cryp-
tographic information application. International Standard (2004)

12. ISO/IEC 7816-4: Identification cards – Integrated circuit cards – Part 4: Organi-
zation, security and commands for interchange. International Standard (2005)

13. ISO/IEC 7816-5: Identification cards – Integrated circuit cards – Part 5: Registra-
tion of application providers. International Standard (2005)

14. ISO/IEC 7816-8: Identification cards – Integrated circuit cards – Part 8: Com-
mands for security operations. International Standard (2004)

15. Microsoft Inc.: Cryptography API: Next Generation, http://msdn2.microsoft.
com/en-us/library/aa376210.aspx

16. Sun Microsystems. Java Card Technology, http://java.sun.com/products/
javacard/

17. United States of America National Institute for Standards and Technology (NIST).
Government Smart Card Interoperability Specification – Version 2.1 (July 2003),
http://csrc.nist.gov/publications/nistir/nistir-6887.pdf

18. United States of America National Institute for Standards and Technology (NIST).
Interfaces for Personal Identity Verification. NIST Special Publication 800-73-1
(March 2006), http://csrc.nist.gov/publications/nistir/nistir-6887.pdf

19. Open Card Consortium. OpenCard Framework Version 1.2, http://www.
opencard.org/docs/1.2/index.html

20. RSA Laboratories. PKCS #11: Cryptographic Token Interface Standard - Ver-
sion 2.2. Public Key Cryptography Standards – PKCS #11 (June 2004),
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

http://www.gematik.de/upload/gematik_eGK_Specification_Part2_e_V1_1_1 _516.pdf
http://www.gematik.de/upload/gematik_eGK_Specification_Part2_e_V1_1_1 _516.pdf
http://www.electronics.ca/reports/ic/smart_cards.html
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://msdn2.microsoft.com/en-us/library/aa376210.aspx
http://java.sun.com/products/javacard/
http://java.sun.com/products/javacard/
http://csrc.nist.gov/publications/nistir/nistir-6887.pdf
http://csrc.nist.gov/publications/nistir/nistir-6887.pdf
http://www.opencard.org/docs/1.2/index.html
http://www.opencard.org/docs/1.2/index.html
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-20/pkcs-11v2-20.pdf

	Introduction and Motivation
	A Generic Alternative to ISO/IEC 24727-2
	Outline of the Approach
	Recognition of the Card Type
	Mapping the Generic Requests to Card-Specific APDUs
	The Structure of the CardInfo-Files

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

