
A Comprehensive Reference Architecture for
Trustworthy Long-Term Archiving of Sensitive Data

Detlef Hühnlein∗, Ulrike Korte†, Lucie Langer‡ and Alex Wiesmaier‡
∗secunet Security Networks AG, Germany

Email: detlef.huehnlein@secunet.com
†Federal Office for Information Security, Germany

Email: ulrike.korte@bsi.bund.de
‡Technische Universität Darmstadt – CASED, Germany

Email: {langer, wiesmaie}@cdc.informatik.tu-darmstadt.de

Abstract—It is well known that the suitability of many crypto-
graphic algorithms decreases with time. Hence, it is a challenging
task to maintain the integrity, authenticity, confidentiality and
availability of sensitive data over very long periods of time. A
scalable approach to preserve the integrity and authenticity of
archived data has been standardized in [1]. The confidentiality
and availability of data can be supported using secret sharing
techniques according to [2]. This paper introduces a reference
architecture for trustworthy long-term archiving of sensitive data
based on the combination of these approaches.

Index Terms—long-term archiving; secret sharing; integrity;
authenticity; confidentiality; availability

I. INTRODUCTION AND MOTIVATION

Paper based workflow and document handling is increas-
ingly replaced by electronic business processes. This strongly
affects the trustworthy long-term retention of relevant doc-
uments: As electronic documents are virtual, they require
special measures to counter security threats.

The German Federal Office for Information Security (BSI)
has been developing a Technical Directive [3] which regulates
trustworthy long-term archiving in German government agen-
cies. The directive refines the standardized Open Archival In-
formation System (OAIS) model [4], which provides integrity
and authenticity. However, as confidentiality and availability
are often important requirements for application scenarios in
practice, the proposed solution is not suitable for these without
modification. This paper therefore broadens the approach
in [3], resulting in a comprehensive reference architecture
which also provides confidentiality and availability.

After giving an overview over previous work in Section II,
general requirements for long-term retention are described
in Section III. Section IV explains the fundamental mod-
ules, interfaces, and processes of the comprehensive reference
architecture. Section V focuses on the archive timestamp
management. Section VI summarizes and concludes the paper.

II. RELATED WORK

The large amount of previous work, which motivated and
coined our proposed reference architecture, can be grouped
into the following categories. First (cf. II-A) there has been
basic work which deals with the general aspects of long-term
archiving of digital data. Second (cf. II-B) there has been work

which mostly concentrates on how to maintain integrity and
authenticity of data over a long period of time and how to
build related systems. Third (cf. II-C) there is work which
mostly concentrates on questions related to confidentiality
and availability. It seems that our proposal combines the
different requirements for the first time in order to build a
comprehensive reference architecture for long term archiving
of sensitive data.

A. General aspects of long-term archiving

The general aspects of long-term archiving of digital data
have already been treated in textbooks like [5] and [6]. Fur-
thermore, there is the standardized OAIS reference model [4].
The general requirements for long-term archiving services
documented in [7] should as well be considered in the design
of any long-term archiving system.

B. Integrity and authenticity

It is known since more than a decade that timestamps [8]
can be used to maintain the integrity and authenticity of digital
data – and in particular digital signatures [9], [10] – over long
periods of time. It is clear that standards such as [11], [12]
do not provide scalable and cost efficient solutions for long-
term archiving, because the timestamp renewal would require
a new qualified timestamp for each archive object – if the
archive objects should remain independent, which is often an
important requirement in practice.

In order to minimize the number of qualified timestamps
required, one may use Merkle’s hash trees [13] as standardized
in [1]. Whereas [1] defines an ASN.1 based Evidence Record
Syntax (ERS), there is an XML based ERS version on its
way [14]. There have been first proposals to build more com-
prehensive long-term archiving services and systems around
the ERS standard [15], [16].

C. Confidentiality and availability

In a naive perspective it would seem to be the canonical
choice to use encryption in order to realize confidentiality
when archiving data. There have been plenty of proposals
in this direction [17]–[21]. However, the use of encryption
algorithms usually provides only conditional security and –



just as for the signature and hash algorithms above – it would
be necessary to provide additional conservation mechanisms
in case the used keys or algorithms tend to become weak over
time.

In order to avoid such cumbersome procedures it seems
to be preferable to use secret sharing mechanisms instead of
encryption, as it is well known that there are unconditionally
secure mechanisms [2] for this purpose.1

Although there have already been proposals for data stor-
age systems based on secret sharing [24]–[26] they do not
seriously2 consider the problems of long-term integrity. Hence,
our reference architecture seems to be the first proposal which
provides integrity and confidentiality at the same time.

III. REQUIREMENTS FOR TRUSTWORTHY LONG-TERM
ARCHIVING

In the following we review the requirements for long-term
retention in general [7].

Integrity: The integrity of any document retained must
be ensured in a verifiable and conclusive way. The document
must not be maliciously or accidentally altered, deleted or
overwritten. Thus, there must be a means to detect whether
a document has been altered or deleted, and the archiving
system must provide methods to prevent undue modifications
and to retrieve documents in their original state.

Authenticity: The authenticity of the documents must be
preserved in order to keep the originator of the document
identifiable and verifiable. As for integrity, it may be required
to prove authenticity conclusively.

Readability: The data retained has to be readable, i.e. it
must be possible to visualize the information contained. Thus,
hardware to access the data must be available as well as
software to interpret and present it.

Completeness: Any compilation of interrelated docu-
ments must be preserved in its entirety, i.e. the connection
of these documents must be verifiable.

Negotiability: Documents under retention should be
portable to other systems while maintaining the ability to ver-
ify their characteristics (e.g. their integrity). This is particularly
important if the documents are to be used in a lawsuit.

Confidentiality: Any confidential information stored must
be protected against unauthorized access.

Legal Compliance: The data must be stored in a way such
that the applicable legal requirements are satisfied. If qualified
electronic signatures according to § 2 Nr. 3 of the German
Signature Act are archived, this implies for example that an
integrity conservation mechanism with qualified timestamps
must be applied.

1Note that the well-known one-time pad, which provides unconditionally
secure encryption, may also be viewed as a 2 out of 2 secret sharing scheme
and using the one-time pad for long-term protection of sensitive data was first
proposed in [22], [23].

2In order to provide integrity (against passive attackers) it is proposed
in [26] to use algebraic signatures [27], but those signatures can be easily
forged by an active adversary.

Fig. 1. Archive IT reference architecture

Availability: The stored data must always be accessible
by authorized entities. As system failures cannot be excluded
this implies that a certain amount of redundancy is required
for data storage.

Migratability: As computing and storage technologies
advance, the stored data must be easily migrated from one
storage technology to its successor. Hence, a technology
independent storage format is beneficial in the long term.

IV. REFERENCE ARCHITECTURE

Based on the ERS standard [1] and the results of the
ArchiSig3 and ArchiSafe4 [16] projects, the BSI has been de-
veloping a Technical Directive [3] which supports the integrity
and authenticity of archived data. We extend and refine the
architecture proposed in [3] in order to support confidentiality
and availability as well. After a general overview we consider
in particular the various modules (cf. IV-B) as well as the
interfaces and processes (cf. IV-C).

A. Overview

The Long-Term Archive (LTA) of the proposed reference
architecture (Fig. 1) consists of the following logical modules:

1) Archive Gateway Module (ArchiSafe)
2) Evidence Module (ArchiSig)
3) Crypto Module
4) Storage Module (eSafe)
The applications within the Application Layer (Fig. 1) may

invoke the following functions:
1) ArchiveSubmissionRequest /-Response
2) ArchiveRetrievalRequest /-Response
3) ArchiveDataRequest /-Response
4) ArchiveEvidenceRequest /-Response
5) ArchiveDeletionRequest /-Response

3See http://www.archisig.de/
4See http://www.archisafe.de/



B. Modules
1) Archive Gateway Module – ArchiSafe: The ArchiSafe

Module receives requests from applications such as Enterprise
Resource Planning, Document Management Systems, or E-
Mail. The objects to be archived are contained in a package
which is referred to as XML Archival Information Package
(XAIP) according to [4], which eases migration from one
storage technology to another. If an application does not pro-
duce XAIPs, an additional component, called XML Adapter,
is necessary to convert the archive package into an XAIP.

The ArchiSafe Module controls the processes and formats
on the basis of standardized XML schemes and reviews the
access rights of the callers. The security requirements of this
module (especially concerning access control and information
flow) are defined in a Common Criteria Protection Profile
(PP) [28]. It is recommended to certify ArchiSafe products
against this PP in order to assure that only reliable requests
and archive objects can be sent to the Storage Module.

If the archive package is already signed on the application
layer, the ArchiSafe Module calls the Crypto Module in order
to verify the signatures. Furthermore, the ArchiSafe Module
activates services of the ArchiSig Module and finally stores
the archive package in the Storage Module.

2) Evidence Module – ArchiSig: In the ArchiSig project
a concept has been developed which allows to renew the
signatures of several documents by issuing just one timestamp.
All documents are hashed and the resulting hash values are
merged into a hash tree [1], [13]. Then, a timestamp for the
root hash value of the tree is generated. This time-stamped
hash value consolidates the validity of all involved documents
at the time the timestamp was generated. By iteratively re-
newing this timestamp before the cryptographic algorithms or
parameters used become weak or compromised, the validity of
the documents is preserved for a potentially arbitrary period
of time. This way legal compliance can be achieved. Upon
request, the ArchiSig Module uses the stored hash trees and
timestamps to generate Evidence Records (ERs) according
to [1].

If cryptographic functions are needed, the ArchiSig Module
requests them from the Crypto Module.

3) Crypto Module: The Crypto Module supports at least
the following services: Generation of hash values, timestamps
and (optionally) signatures as well as verification of signatures
or timestamps along with associated certificate chains. If re-
quired, the Crypto Module can download the signer certificate
from one of the authorized certificate service providers (CSP)
and examine the certificates. Furthermore, the Crypto Module
has the ability to ask for (qualified) timestamps from CSPs.

The Crypto Interface (Fig. 1) should comply with stan-
dardized interfaces such as [29], [30] in order to simplify
the integration of cryptographic operations and to allow for
interoperability between different Crypto Modules.

4) Storage Module – eSafe: This module supports a storage
service, a search service and a deletion service. In [3] there are
no functional requirements specified for this module besides
the ability for a bit-exact reproduction of the stored data. With

respect to our additional requirements of confidentiality and
availability, however, we suggest to use a distributed architec-
ture which ensures (k, n) threshold confidentiality. The idea is
to split the archive object into shares, which are subsequently
stored on different servers. This approach was introduced
in [31] and uses secret sharing according to Shamir [2].
The advantage is that confidentiality does not hinge on the
security of encryption algorithms that may be broken in the
future. Thus, this approach is particularly suitable for long-
term storage. Moreover, this concept enhances availability as
any k out of n servers may be queried to provide a share in
order to reconstruct the document.

In the following we briefly explain the method used to
store a confidential document. In order to share a secret,
choose n pairwise different public values x1, . . . , xn and a
secret polynomial f of order k− 1. The secret corresponds to
f(0). Apply the secret sharing algorithm [2], i.e. compute the
function values yi = f(xi) for i = 1, . . . , n. In order to share
a document, divide it into blocks of equal length and treat each
block as a secret, i.e. apply the above-mentioned algorithm.
For each block the values xi are fixed while the secret
polynomial varies. When all data blocks have run through the
algorithm, the function values are sorted as follows: For each
xi, subsume all function values yi = f(xi) of the iterations
under a package called share. Thus, for each share-ID xi there
exists one share. Finally, the shares are distributed among the
n storage servers. In order to reconstruct an archive object, all
of its data blocks must be reconstructed by collecting k out
of n shares and applying an interpolation formula.

C. Interfaces and processes

This section describes the operations which an application-
level client can initiate. All interfaces are realized as web
services using the basic request and response types defined
in [30].

1) ArchiveSubmissionRequest /-Response: This service be-
longs to the main operations of the archive service. The client
creates an XAIP, integrates it in the ArchiveSubmissionRe-
quest and transfers the request to the archiving service.

The ArchiveSubmissionResponse contains a unique identi-
fier called Archive Token. It enables the client to refer to the
XAIP in order to export it (cf. IV-C2), to delete it (cf. IV-C5)
or to request related ERs (cf. IV-C4). This service type is
supported by the ArchiSafe, ArchiSig, and eSafe Modules.

If the XAIP contains digital signatures, these are verified us-
ing the VerifyRequest-function offered by the Crypto Module
according to [29] and [30].

2) ArchiveRetrievalRequest /-Response: The operation
ArchiveRetrievalRequest retrieves the archive object identified
by the Archive Token. The archive service returns the XAIP.
This service is supported by the ArchiSafe and eSafe Modules.

3) ArchiveDataRequest /-Response: The operation
ArchiveDataRequest allows to request only a certain part
of the archive object, for example its owner name or other
metadata. This service is supported by the ArchiSafe and
eSafe Modules.



4) ArchiveEvidenceRequest /-Response: This service en-
ables a client to request an ER in order to verify the integrity
and authenticity of a stored XAIP. The ArchiveEvidenceRe-
sponse returns an ER proving that the data existed at a certain
point in time and has not been altered since then. If the
archived data has been signed, the authenticity of the data
is implied as well as the conclusiveness of the signature. This
service is supported by the ArchiSafe and ArchiSig Modules.

5) ArchiveDeletionRequest /-Response: This service allows
a client to delete an XAIP identified by the Archive Token.
This service is supported by the ArchiSafe and eSafe Modules.

V. ARCHIVE TIMESTAMP MANAGEMENT

The process of iteratively renewing the timestamp is an
internal process of the Evidence Module. According to [1],
the archive timestamp management splits into two different
scenarios, called Timestamp Renewal (cf. V-A) and Hash Tree
Renewal (cf. V-B). By applying the distributed secret sharing
storage system a third scenario is implied, which we call Share
Renewal (cf. V-C).

A. Timestamp Renewal

If the hash algorithm used to build the hash tree is consid-
ered secure, Timestamp Renewal is sufficient to preserve the
validity of the hash tree. Before the algorithms or parameters
used to generate the current timestamp of the root node are
compromised or involved certificates expire, the current time-
stamp is enclosed in a new timestamp using valid certificates
and secure algorithms and parameters [1].

B. Hash Tree Renewal

If the hash algorithm used to build the hash tree is con-
sidered insecure, Hash Tree Renewal is applied to preserve
the validity of the hash tree. Before the current hash tree is
compromised, the tree is rebuilt from scratch using a hash
algorithm considered secure [1].

C. Share Renewal

As explained in Section IV-B4, each share belonging to the
same archive object is stored on a different server. Whenever
a server is added or removed from the system, for each
archive object a share is added or, respectively, removed from
the system. New shares can be added to the system without
changing the existing shares. When removing a share from the
system, the remaining shares of the same archive object have
to be recomputed in order to invalidate the removed share.
This is called Share Renewal.

Whether renewing the shares has influence on the archive
timestamp management depends on the configuration of the
application or, respectively, of the LTA. We present two basic
modes, Inside Shared Mode and Outside Shared Mode, and
sketch further possible modes.

Assuming a k out of n secret sharing, in both modes storing
an archive object leads to storing n shares within the eSafe
Module. Retrieving an archive object leads to accessing k
shares in the eSafe Module. However, the modes differ in

the number of shares that have to be accessed for building
or renewing the hash tree. In addition, the modes provide
different security properties.

In Inside Shared Mode, the secret sharing mechanisms are
applied by the eSafe Module and are invisible outside the
module. The application sends the entire objects to be archived
to the LTA. Thus, the hash tree is built from hash values
of the archive objects. The size of the tree depends on the
number of archive objects. Building or renewing the tree
leads to accessing k shares (by and within the eSafe Module)
per archive object. Renewing archive object shares does not
influence the archive timestamp management, as it does not
influence the hash values in the hash tree. This is the more
efficient mode, but the objects’ confidentiality is not protected
outside the eSafe Module by the secret sharing mechanisms.

In Outside Shared Mode, the secret sharing mechanisms are
applied by the application and are visible outside the eSafe
Module. The application sends the shared archive objects to
the LTA. From the point of view of the ArchiSafe and ArchiSig
modules, these shares are regular archive objects. Thus, the
hash tree is built from the hash values of the shares. The size
of the hash tree depends on the number of shares. Building
or renewing the hash tree leads to accessing n shares per
entire object. Renewing object shares influences the archive
timestamp management, as the respective hash values in the
hash tree have to be replaced. This is the less efficient mode,
but the archive objects’ confidentiality is protected outside the
eSafe Module by the secret sharing mechanisms. In order to
prevent attacks involving combining less than k shares, some
countermeasures such as storing the value k together with the
shares have to be taken.

Combinations or variants of the above-mentioned modes
produce a good tradeoff between efficiency and security. A
reasonable mode seems to be having the shares generated
by the application, but nevertheless building the hash tree
using the hash values of the entire objects. Another interesting
variant is distributing the application-generated shares among
several different LTAs.

VI. CONCLUSION AND OUTLOOK

We introduced a comprehensive reference architecture for
the trustworthy long-term archiving of sensitive data based
on the primitives introduced in [1] and [2]. Integrity and
authenticity is preserved by applying efficient timestamps,
which are renewed in reaction to predictable security threats.
Confidentiality and availability is achieved by applying secret
sharing mechanisms. In contrast to the timestamps, the security
of the shares does not degrade over time.

In order to improve the level of security and guard against
a total breakdown of the system in case of an unexpected
security threat, it seems appropriate to apply multiple algo-
rithms concurrently for the cryptographic primitives used. The
idea behind this concept is that the unexpected breakdown
of a number of different algorithms at the same time is the
more unlikely the more algorithms are applied. In order to take
advantage of this effect it is important to combine the various



s Call Tall[yrs] Xgiven Xany

103 4 ∗ 1010 1 8 ∗ 108 5 ∗ 106

106 4 ∗ 1022 1012 8 ∗ 1020 5 ∗ 1015

109 4 ∗ 1034 1024 8 ∗ 1032 5 ∗ 1024

1012 4 ∗ 1046 1036 8 ∗ 1044 5 ∗ 1033

TABLE I
SECURITY ESTIMATES FOR DIFFERENT VALUES OF s

algorithms correctly. For certificates and timestamps this can
be done as proposed in [32]. For building the hash tree this
can be done as shown in [33].

In order to enhance confidentiality and availability, the eSafe
should not be part of a single LTA but rather be distributed
among several LTAs as suggested in Section V-C. For the LTA,
a share is then just an archive object like any other. The IDs of
the object shares are managed by the client. In this scenario,
the LTA is no single point of failure as any k out of n LTAs
may be queried to provide a share in order to reconstruct an
object. Furthermore, confidentiality is ensured on a high level
as the archived object is not readable outside the client as
long as k LTAs do not cooperate maliciously. As the LTAs
are considered trustworthy, this risk is low. Thus, this approach
provides a strong notion of confidentiality and availability.

Table I exemplarily sums up the calculations we made
on the security of the eSafe. A more thorough and detailed
presentation of the security analysis is subject to future work.
For the presented values we assume a 4 out of 7 secret sharing
and 1ms to recombine 4 shares: s is the total number of shares
stored in the eSafe. Call are the possible 4-combinations out
of s shares. Tall is the time needed to build all 4-combinations
i.e. to reconstruct all archive objects. Xgiven is the number of
randomly picked 4-combinations needed to rebuild at least one
given archive object with probability 0.5. Xany is the number
of randomly picked k-combinations needed to rebuild at least
one arbitrary archive object with probability 0.5. We see that
for large but realistic values of s the effort to maliciously
reconstruct archive objects is not practically affordable.

REFERENCES

[1] T. Gondrom, R. Brandner, and U. Pordesch, “Evidence Record Syntax
(ERS),” Request For Comments – RFC 4998, August 2007.

[2] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, pp. 612–613, 1979.

[3] Federal Office for Information Security, “Trustworthy Long Time
Archiving,” Technical Directive (BSI-TR-03125), 2009, in preparation.

[4] International Standardization Organization, “ISO 14721: space data and
information transfer systems – open archival information system –
reference model,” International Standard, 2003.

[5] U. M. Borghoff, P. Rödig, and J. Scheffczyk, Long-Term Preservation
of Digital Documents, Principles and Practices. Springer, 2003.

[6] H. M. Gladney, Preserving Digital Information. Springer, 2007.
[7] C. Wallace, U. Pordesch, and R. Brandner, “Long-term archive service

requirements,” Request For Comments – RFC 4810, March 2007.
[8] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,”

Journal of Cryptology, vol. 3, no. 2, pp. 99–111, 1991.
[9] P. Maniatis and M. Baker, “Enabling the archival storage of signed

documents,” in Proceedings of the 2002 Conference on File and Storage
Technologies (FAST). USENIX, 2002, pp. 1–14.

[10] C. Troncoso, D. D. Cock, and B. Preneel, “Improving secure long-term
archival of digitally signed documents,” in Proceedings of the 4th ACM
international workshop on Storage security and survivability. ACM-
Press, 2008, pp. 27–36.

[11] ETSI, “Electronic Signatures and Infrastructures (ESI) – Electronic Sig-
natures and Infrastructures (ESI); CMS Advanced Electronic Signatures
(CAdES),” TS 101 733, Version 1.7.4, 2008.

[12] ETSI, “Technical Specification XML Advanced Electronic Signatures
(XAdES),” TS 101 903, Version 1.3.2, 2006.

[13] R. C. Merkle, “Protocols for public key cryptosystems,” in Symposium
on Security and Privacy, Oakland, CA, USA, April 1980, pp. 122–134.

[14] A. J. Blazic, S. Saljic, and T. Gondrom, “Extensible markup language
evidence record syntax,” Internet Draft of August 3, 2009.

[15] A. J. Blazic and P. Sylvester, “Provision of long-term archiving service
for digitally signed documents using an archive interaction protocol,” in
EuroPKI, ser. Lecture Notes in Computer Science, vol. 3545. Springer,
2005, pp. 240–254.

[16] W. Zimmer, T. Langkabel, and C. Hentrich, “Archisafe: Legally com-
pliant electronic storage,” IT Professional, vol. 10, no. 4, pp. 26–33,
2008.

[17] A. Iyengar, R. Cahn, J. A. Garay, and C. Jutla, “Design and implemen-
tation of a secure distributed data repository,” in Proceedings of the 14th
IFIP International Information Security Conference (SEC 98), 1998, pp.
123–135.

[18] A. Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. Wattenhofer, “Farsite:
Federated, available, and reliable storage for an incompletely trusted
environment,” in Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI). USENIX, 2002.

[19] E. L. Miller, D. D. E. Long, W. E. Freeman, and B. C. Reed, “Strong
security for network-attached storage,” in Proceedings of the 2002
Conference on File and Storage Technologies (FAST) (Monterey, CA,
Jan. 2002). USENIX, 2002, pp. 1–14.

[20] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Ku-
biatowicz, “Pond: the oceanstore prototype,” in Proceedings of the
Second USENIX Conference on File and Storage Technologies (FAST).
USENIX, 2003, pp. 1–14.

[21] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
scalable secure file sharing on untrusted storage,” in Proceedings of the
Second USENIX Conference on File and Storage Technologies (FAST)
(San Francisco, CA, Mar. 2003). USENIX, 2003, pp. 29–42.

[22] G. Raptis, “Kryptographischer Langzeitschutz,” KES - The Information
Security Journal, vol. 1, pp. 55–62, 2008.

[23] ——, “Vertraulichkeit von medizinischen Daten in der Telematik-
Infrastruktur: Sicherheitsanalyse unter Berücksichtigung von Aspekten
der langfristigen Sicherheit,” Dissertation, University of Heidelberg,
2008.

[24] G. R. Goodson, J. J. Wylie, G. Ganger, and M. K. Reiter, “Efficient
byzantine-tolerant erasure-coded storage,” in Proceedings of the 2004
Intl Conference on Dependable Systems and Networking (DSN 2004)
(June 2004). IEEE Computer Society, 2004, pp. 135–144.

[25] A. Subbiah and D. M. Blough, “An approach for fault tolerant and secure
data storage in collaborative work environements,” in Proceedings of the
2005 ACM Workshop on Storage Security and Survivability (Fairfax, VA,
Nov. 2005). ACM-Press, 2005, pp. 84–93.

[26] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, “Potshards:
Secure long-term storage without encryption,” in USENIX Annual Tech-
nical Conference. USENIX, 2007, pp. 143–156.

[27] S. J. Schwarz and E. L. Miller, “Store, forget, and check: Using algebraic
signatures to check remotely administered storage,” in Proceedings of
the 26th International Conference on Distributed Computing Systems
(ICDCS 06) (Lisboa, Portugal, July 2006). IEEE, 2006.

[28] Federal Office for Information Security and Federal Physical Techni-
cal Institute, “Common Criteria Protection Profile for an ArchiSafe
Compliant Middleware for Enabling the Legally compliant Long-Term
Preservation of Electronic Documents,” BSI-CC-PP-0049-2008, 2008.

[29] Federal Office for Information Security (Bundesamt für Sicherheit in der
Informationstechnik), “eCard-API-Framework – part 1 - 7,” Technical
Directive (BSI-TR-03112), Version 1.1, 2009.

[30] OASIS, “Digital signature service core protocols, elements, and bind-
ings, version 1.0,” 2007.

[31] T. Miyamoto, S. Doi, H. Nogawa, and S. Kumagai, “Autonomous
distributed secret sharing storage system,” Systems and Computers in
Japan, vol. 37, no. 6, pp. 55–63, 2008.



[32] S. Maseberg, “Fail-Safe-Konzepte für Public Key Infrastrukturen,” Ph.D.
dissertation, Department of Cryptology and Computeralgebra, Technis-
che Universität Darmstadt, July 2002.

[33] M. Fischlin and A. Lehmann, “Security-amplifying combiners for hash
functions,” in Advances in Cryptology - Crypto 2007, ser. Lecture Notes
in Computer Science, vol. 4622. Springer-Verlag, 2007, pp. 224–243.


