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ABSTRACT
Many future electronic identity cards will be equipped with a contact-
less interface. Analysts expect that a significant proportion of fu-
ture mobile phones support Near Field Communication (NFC) tech-
nology. Thus, it is a reasonable approach to use the cell phone as
mobile smart card terminal, which in particular supports the Pass-
word Authenticated Connection Establishment (PACE) protocol to
ensure user consent and to protect the wireless interface between
the mobile phone and the smart card. While there are efficient
PACE implementations for smart cards, there does not seem to be
an efficient and platform independent solution for mobile termi-
nals. Therefore we provide a new implementation using the Java
Micro Edition (Java ME), which is supported by almost all modern
mobile phones. However, the benchmarks of our first, straightfor-
ward PACE implementation on an NFC-enabled mobile phone have
shown that improvement is needed. In order to reach a user friendly
performance we implemented an optimized version, which, as of
now, is restricted to optimizations which can be realized using fea-
tures of existing Java ME libraries.

In the work at hand we present a review of the relevant algorithms
and provide benchmarks of the corresponding arithmetic functions
in different Java ME libraries. We discuss the different optimization
approaches, introduce our optimized PACE implementation, and
provide timings for a desktop PC and a mobile phone in comparison
to the straightforward version. Finally, we investigate potential side
channel attacks on the optimized implementation.
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1. INTRODUCTION
Many countries around the world have engaged in the deployment
of electronic identity (eID) cards [2,9,29]. The European Commit-
tee for Standardization (Comité Européen de Normalisation, CEN)
is currently developing the technical standard series CEN prTS
15480 [7], which defines services, command sets, application in-
terfaces and profiles for European Citizen Cards. [7, Part 4, An-
nex A] specifies card application templates and there is a profile,
which specifies an “eID application with mandatory ICAO func-
tionality and conditional digital signature functionality”. This pro-
file will be implemented for example by the forthcoming German
eID card [10] and may serve as blueprint for other citizen cards,
which also provide machine readable travel document functional-
ity as specified by the International Civil Aviation Organization
(ICAO) [15–17]. Such citizen cards will in particular provide a
contact-less interface according to [19] and support version 2 of
the Extended Access Control (EAC) protocol according to [11].
Because analysts expect [23] that a significant proportion of future
mobile phones will be equipped with Near Field Communication
(NFC) technology [21,22], it is worth to investigate whether NFC-
enabled phones may serve as smart card terminals for mobile Eu-
ropean Citizen Card applications.

The EAC protocol may in particular be used together with the Pass-
word Authenticated Connection Establishment (PACE) [11, Sec-
tion 4.2] protocol. PACE ensures user consent and protects the
wireless channel between the mobile phone and the smart card. It
is specified in a way that allows implementing it using different
cryptographic primitives. The work at hand focuses on PACE re-
alized using Elliptic Curve Cryptography (ECC), especially on the
version used in the forthcoming German eID card.



There are already very efficient hardware specific PACE implemen-
tations for low power devices written in C and Assembler [34]. In
order to support a maximum of mobile devices without depending
on special hardware or operating systems we provide a Java Micro
Edition (Java ME) implementation of PACE. But while our refer-
ence Java implementation of PACE, which is straightforward and
contains no optimizations, performs well on typical desktop sys-
tems (cf. Table 9), the efficient implementation on a mobile phone
turns out to be a challenging task. Various optimizations are re-
quired in order to come up with a user friendly performance.

The optimizations investigated in the work at hand are restricted
to those which can be realized using features existing libraries for
Java ME provide. Adaptations of algorithms to the special needs of
the PACE protocol and their implementation are subject to ongoing
work.

The paper is structured as follows. Section 2 provides the necessary
background on the PACE protocol. Section 3 gives an overview
of efficient elliptic curve (EC) point multiplication algorithms in-
cluding the number of involved point additions and doublings. In
Section 4 we discuss different approaches to optimize the PACE
implementation. Section 5 provides benchmarks for large number
arithmetic in different Java ME libraries. It presents the main as-
pects of the optimized implementation and compares the resulting
timings to those of the reference implementation. This is done sep-
arately for different Cryptographic Service Providers (CSP) as well
as on desktop PC and cell phone. Section 6 addresses potential side
channel vulnerabilities of the optimized implementation. Section
7 gives an outlook on future work and further improvements cur-
rently restricted by hard- or software limitations. Section 8 finally
summarizes the presented work and concludes the paper.

2. BACKGROUND ON PACE
PACE was developed by the German Federal Office for Informa-
tion Security (Bundesamt für Sicherheit in der Informationstech-
nik, BSI) and is designed to be free of patents. Security analyses
of the PACE protocol can be found in [3, 34]. From this point on
we use the terms and notation introduced in [11]. There, the term
for a contact-less smart card is Proximity Integrated Circuit Card
(PICC) and the contact-less smart card terminal is called Proximity
Coupling Device (PCD).

Besides other things, PACE establishes a shared session key be-
tween the PICC and the PCD using the well known Diffie-Hellman
(DH) key agreement protocol [8]. For elliptic curves this works
as follows: Two parties A and B want to agree on a shared key.
Each party selects a secret scalar dA and dB respectively. Using a
public EC point Q then A computes QA = dA ∗ Q and B com-
putes QB = dB ∗ Q. After exchanging the results, A computes
QAB = dA ∗QB and B computes QAB = dB ∗QA. The common
key is the x-coordinate of QAB.

As the DH key agreement does not support authentication of the
communication partners it is vulnerable to man-in-the-middle at-
tacks. In order to prevent this and to ensure user consent, PACE
uses a password-based protocol (see [4, Section 7] for similar pro-
tocols of this type) to protect the wireless communication interface
between the PCD and the PICC before the PICC is accessed. In the
most common scenario the password π is a Personal Identification
Number (PIN), which is permanently stored in the PICC and is en-
tered into the PCD by the user. As the password is used during the
calculation of the session key, entering a wrong password leads to

PICC PCD

(a) Kπ = KDFπ(π) Kπ = KDFπ(π)

(b) z = E(Kπ, s)
z−→ s = D(Kπ, z)

(c) Y = y ·G X←− X = x ·G
Y−→

(d) H = y ·X H = x · Y
(e) G′ = s ·G+H G′ = s ·G+H

(f) P̃KPICC = S̃KPICC ·G′
P̃KPCD←− P̃KPCD = S̃KPCD ·G′

P̃KPICC−→
(g) K = S̃KPICC · P̃KPCD K = S̃KPCD · P̃KPICC

(h) KENC = KDFENC(K) KENC = KDFENC(K)

(i) KMAC = KDFMAC(K) KMAC = KDFMAC(K)

(j) TPICC =
TPCD←− TPCD =

MAC(KMAC, P̃KPCD)
TPICC−→ MAC(KMAC, P̃KPICC)

Figure 1: PACE [11, Chapter 4.2]

different session keys on both sides which causes the connection
establishment to fail.

Figure 1 provides an overview of the steps of the PACE protocol.
Before the protocol starts the PCD needs to read the domain param-
eters D from the PICC, which contain a common base point G and
related ECC1 parameters. The values x, y, S̃KPCD and S̃KPICC

are uniformly chosen random numbers smaller than the order r of
the elliptic curve.

1. As depicted in step (b), the PICC chooses a nonce s uni-
formly at random and encrypts it using the encryption func-
tion E(key, ·) with the key Kπ derived in step (a) from the
shared password π. The PCD decrypts the cipher text using
the decryption function D(key, ·) and the same key Kπ to
obtain the nonce s.

2. Now both parties use s to generate new domain parameters
D′ = Map(D, s), which in particular contain a new com-
mon base point G′, which is used for the subsequent Diffie-
Hellman key agreement. There are two options for the im-
plementation of the Map-function:

• Generic Mapping
The Generic Mapping [11, A.3.4.1] shown in steps (c) –
(e) already has been supported in version 1 of the PACE
protocol. It is used by the German eID card, which is
issued since November 2010. The new base point G′

is given as G′ = s · G + H , where H is agreed upon
by the two communication partners in an anonymous
Diffie-Hellman key agreement.

• Integrated Mapping
In Integrated Mapping [18], which is only supported by
version 2 of the PACE protocol, the new base point G′

is computed as G′ = f(R(s ‖ t)). Where t is chosen
by the PCD and sent to the PICC, the pseudo-random
function R is specified in [30] and the function f will
most likely be based on [14] and [31]. Focusing on the
German eID card which uses the Generic Mapping by

1The specification of the PACE protocol in [11] also covers multi-
plicative groups over finite fields. Here we present our results for
groups of points on elliptic curves. The results can be applied to
multiplicative groups analogously.



now, we do not investigate the Integrated Mapping any
further in the present work.

3. As shown in steps (f) – (g), the PICC and the PCD respec-
tively choose an ephemeral private key (S̃KPICC, S̃KPCD)
uniformly at random and perform a Diffie-Hellman key agree-
ment based on G′. Both calculate a common secret point K.

4. Steps (h) and (i) depict how the keys KENC for message en-
cryption and KMAC for message authentication are derived
from the common secret K using the key derivation func-
tions KDFMAC and KDFENC [11].

5. In step (j) both parties calculate a token (TPICC, TPCD) with
the use of a MAC-function MAC(key, ·) which is a keyed
hash computation using the key KMAC. These tokens are
then used to perform a mutual key confirmation.

3. OPTIMIZED POINT MULTIPLICATION
Since the point multiplication is one of the biggest run-time con-
sumers (cf. Section 5.1) in the PACE protocol, it promises the most
potential for optimization. As an efficient point multiplication al-
gorithm is the basis for an efficient implementation, we present the
most common multiplication algorithms in this chapter. Our anal-
ysis of the point multiplication algorithms is based on [12] and fo-
cuses mainly on the complexity of given algorithms. As we do not
change existing algorithms, we do not go into details how the given
algorithms work.

The complexity evaluation and the notation of the algorithms in this
section is according to [12] and for the ECC and PACE parameters
employed by the upcoming German eID card. The relevant values
are: λ(r) = λ(x) = 256;λ(s) = 128.

We denote the length of a scalar e by λ(e) as the number of binary
digits. The cost of the group operation (addition) "+" is denoted
by ADD (A). The cost of the scalar multiplication "·" is denoted by
MULT (M), the cost of point doubling by DBL (D) and the cost of
an interleaved multiplication (e1 · P1 + e2 · P2) by PSUM. Note
that in general MULT < PSUM < 2 MULT holds if the involved
scalars and points have similar magnitudes respectively.

3.1 Review of Basic Elliptic Curve Single Point
Multiplication Techniques

A variety of algorithms can be used to implement the single point
multiplication on an elliptic curve. Compared to the most basic
algorithm, the left-to-right binary method, the more sophisticated
algorithms employ time-memory trade offs to speed up the com-
putation. Table 1 gives an overview of the complexity of available
algorithms. The formulas used to determine the complexity are
shown in Table 2.

The left-to-right binary method processes the bits of e from left
to right one at a time. The internal intermediate result is initialized
with the point at infinity. Each step doubles the current intermediate
result and adds P each time a nonzero digit is processed. In the
NAF methods e is transformed into the non-adjacent form (NAF)
at first to reduce the density of nonzero digits to 1/3 on average,
therewith reducing the number of point additions. In the window
methods multiples of P are precomputed and stored in additional
memory. Then digits of e are scannedw at a time and the according
multiple of P is taken from the precomputed points and added.
This further reduces the number of ADDs.

algorithm parameter
choices

complexity #precomp.
points

left-to-right binary - 128A+256D -

NAF - 85A+ 256D -

w-NAF w = 5 50A+ 257D 7

Sliding Window NAF w = 5 50A+ 257D 10

Table 1: Single point multiplication. The window parameters
w are chosen to be optimal for the 256-bit curves. The given
complexities in DBL (D) and ADD (A) operations are approxi-
mate.

algorithm complexity formula #precomp. points

left-to-right binary λ(e)
2 A + λ(e)D -

NAF λ(e)
3 A + λ(e)D -

w-NAF (2w−2 − 1 +
λ(e)
w+1 )A +

(λ(e) + 1)D
2w−2 − 1

Sliding Window NAF (
2w−(−1)w

3 − 1 +
λ(e)

w+v(w)
)A + (λ(e) + 1)D

2w−(−1)w

3 − 1

v(w) = 4
3 −

(−1)w

3·2w−2

Table 2: Complexity evaluation formulas of unknown point
multiplication algorithms [12]

The RAM demands of the methods given in Table 1 are maximal
for the Sliding Window NAF method. Here 10 additional points
(and the two we also have in the left-to-right method) need to be
stored. This sums up to 768 bytes (computed as 12 · 2 · 32). Note
that the precomputations in Table 1 are dynamic precomputations,
i.e. have to be done each time a scalar multiplication is conducted.

If the multiplication involves a known point, off-line precomputa-
tions can be used to spare point doublings.2 This can be done for
all algorithms listed in Table 1. For each doubling operation to be
spared in the non-window algorithms one additional point has to
be stored in the device’s non-volatile memory (NVM). This sums
up to 16.384 bytes to store all 256 additional points, which is not
a problem on mobile phones. Note that these precomputed values
can be considered public information and do not need to be kept
secret. They need, however, integrity protection to avoid their ma-
nipulation.

Table 3 gives the complexity of basic algorithms used with off-
line precomputation and the number of points to be stored in the
NVM. Table 4 provides the complexity for the method based on the
exponentiation algorithm due to Lim and Lee [26], including the

2In the future (some) precomputed points might be saved on the
eID cards together with the base point, assumed that the space and
bandwidth constraints will allow for that.



algorithm parameter
choices

complexity
evaluation

#precomp.
points

left-to-right binary - 128A 256

Windowing w = 4 77A 64

Windowing NAF w = 5 71A 52

Table 3: Fixed point multiplication with off-line precomputa-
tion in terms of expected point additions (A). The window pa-
rameters w are chosen to be optimal for the 256-bit curves.

parameter w parameter v complexity
evaluation

complexity
incl.

precomp.

#precomp.
points

4 1 64A+ 63D 71A+255D 15

4 2 64A+ 31D 78A+255D 30

5 1 51A+ 50D 66A+255D 31

5 2 51A+ 25D 81A+255D 62

Table 4: Fixed point multiplication with off-line precomputa-
tion according to Lim and Lee in terms of expected point ad-
ditions (A) and doublings (D). The parameters w and v are
chosen to obtain a good trade off between total complexity and
complexity in the evaluation phase for 256-bit curves.

total complexity if precomputation is done on-line. The formulas
used for complexity evaluation are given in Table 5.

The main idea of the method by Lim and Lee is to divide e into w
bit strings of the same length and to process them parallelly as dif-
ferent exponents comparable to multiple point multiplication with
shorter exponents. An additional parameter v specifies how the dif-
ferent exponents are further partitioned and can also be seen as the
number of lookup tables containing the precomputed points [12].

In cases with no off-line precomputation the method by Lim and
Lee can nearly compete with the window NAF methods. In cases
with off-line precomputation the method by Lim and Lee performs
significantly better than the window NAF methods.

3.2 Review of Basic Elliptic Curve Multiple
Point Multiplication Techniques

There are several methods available [12] which evaluate product
sums k · P + l · Q much more efficient than carrying out the in-
dividual multiplications sequentially and add the results. The com-
plexity and the number of stored points for different approaches can
be seen in Table 6. The respective complexity formulas are given
in Table 7.

While in the first three algorithms addition and doubling operations
are done simultaneously, interleaving only does the doubling simul-
taneously. In our case the latter has some advantages. Firstly, the
precomputed points rely on the points P and Q only. This allows
storing precomputed points for further use. Secondly, the method
allows for exponents with different lengths. Both is useful in our
PACE scenario.

4. OPTIMIZED PACE
In this section we discuss the most promising optimizations for a
PACE implementation on cell phones. The stated amounts of ADD
and DBL are derived from the findings from Section 3 and express
the average case. The proposed optimizations all lead to very sim-

algorithm complexity formula #precomp. points

left-to-right binary λ(e)
2 A λ(e)

Windowing (2w +
⌈
λ(e)
w

⌉
− 3)A

⌈
λ(e)
w

⌉

Windowing NAF ( 2w+1

3 +
⌈
λ(e)+1
w

⌉
− 2)A

⌈
λ(e)+1
w

⌉

LimLee precomp:
v(2w−1−1)A+(λ(e)− λ(e)

wv )D
(2w − 1) · v

main: λ(e)w A + (
λ(e)
wv − 1)D

Table 5: Complexity evaluation formulas of algorithms with
off-line precomputation [12, 13]

algorithm parameter choices complexity #precomp.
points

Simultaneous mult. point w = 2 128A+ 256D 15

Simultaneous slid. window w = 2 118A+ 256D 12

Simultaneous Joint Sparse
Form (JSF)

− 129A+ 255D 3

w-NAF Interleaving
λ(e1) = λ(e2) = 256

w1 = w2 = 5 99A+ 258D 16

w-NAF Interleaving
λ(e1) = 256, λ(e2) = 128

w1 = w2 = 5 78A+ 258D 16

Table 6: Multiple point multiplication in terms of expected
point additions (A) and doublings (D). The window parameters
w are chosen to be optimal for 256-bit curves.

ilar theoretic execution times. Which one is the best in practice
seems to depend on the actual hardware and the respective environ-
mental circumstances. As we have seen in Section 3, storage space
for points is not an issue on modern mobile devices, and is there-
fore not considered here. Likewise the time to load these points can
be assumed to be negligible.

Following the PACE specification (cf. Figure 1) the PCD conducts
the EC computations shown in Equations (1) to (5). Counting the
PCD’s EC computations in this notation leads to a total of 1 ADD
and 5 MULT.

X = x ·G (1)
H = x · Y (2)
G′ = s ·G+H (3)

P̃KPCD = S̃KPCD ·G′ (4)

K = S̃KPCD · P̃KPICC (5)

4.1 Rearranging Equations
When rearranging the equations we have to regard the following
facts: X must be sent to the PICC in order to receive Y , and there-
fore it must be computed before H , G′, P̃KPCD and K. P̃KPCD

must be sent to the PICC in order to receive P̃KPICC and there-



algorithm complexity
formula

stored points

Simultaneous mult. point (3 · 22(w−1) −
2w−1 − 1 +
22w−1

22w

⌈
λ(e)
w

⌉
−

1)A +

(22(w−1) −
2w−1 +

(
⌈
λ(e)
w

⌉
−

1)w)D

22w − 1

Simultaneous slid. window (3 · 22(w−1) −
2w−1 − 1 +
λ(e)
w+1/3

)A +

(22(w−1) −
2w−1 +

(
⌈
λ(e)
w

⌉
−

1)w)D

22w − 22(w−1)

Simultaneous Joint Sparse Form (JSF) (1 +
λ(e)
2 )A +

(λ(e)− 1)D
3

w-NAF Interleaving (
∑
j(2

wj−2 −
1) +∑
j

λ(ej)

wj+1 )A+

(|j : wj > 2|+
maxjλ(ej))D

∑
j(2

wj−2)

Table 7: Complexity evaluation formulas of multiple point mul-
tiplication algorithms [12]

fore it must be computed before K. In addition to Equation 3, G′

is needed in the last PACE step (j), because it is part of the TLV-
object, which serves as input for the computation of TPCD . Thus,
G′ should be a result or be computable from the result without in-
creasing the overall computational cost. We consider the following
possibilities for merging the equations.

α: Standard Interleaving. One possible optimization is to
merge Equations (2) and (3) as shown in Equation (6) to com-
pute G′ using interleaved multiplication. X , P̃KPCD, and K are
computed as shown in Equations (1), (4), and (5). This leads to
an overall computation cost of 3 MULT and 1 PSUM. Using the
best available algorithm and parameters, w-NAF Interleaving with
w = 5, PSUM needs 78 ADD and 258 DBL (cf. Table 6). This
is a vast improvement compared to 2 MULT evaluated as sequen-
tial single point w-NAF multiplications, which sum up to 78 ADD
and 386 DBL (according to Table 2). A possible shortcoming is
that s, which is only half the length of x, is forced into a scalar
multiplication of the dimension of the size of x. Using single point
multiplication this is clearly considered.

G′ = s ·G+ x · Y (6)

β: Short Scalar Interleaving. The shortcoming of the above
Equation (6) regarding the interleaved multiplication with s and
x may be countered using the following trick: We know that the
size of s is half the size of x. We break the pair (x, Y ) into two

pairs (x1, Y1) and (x2, Y2) as is done when using the LimLee
method. The scalars x1, x2, and s now have the same size and
the pair (s,G) can be added as third summand to the pairs (x1, Y1)
and (x2, Y2) resulting in a standard interleaved multiplication with
three summands as shown in Equation (7). As with Equation (6),
X , P̃KPCD, and K are computed as shown in Equations (1), (4),
and (5). This leads to an overall computation cost of 3 MULT and
1 PSUM where the scalars in the PSUM are half the size of those of
the PSUM of Equation (6). Using w-NAF Interleaving with w = 5
PSUM needs 85 ADD and 131 DBL according to Table 7 and ad-
ditionally 128 DBL to prepare Y2. In total this is nearly the same
as the PSUM costs resulting from Equation (6) and thus, is also a
vast improvement compared to the not optimized version.

G′ = s ·G+ x1 · Y1 + x2 · Y2 (7)

γ: Inversion. A third possibility is to merge Equations (2), (3),
and (4) as shown in Equation (8) to compute P̃KPCD using in-
terleaved multiplication. G′ then has to be computed by a scalar
multiplication with an inverse as shown in Equation (9). X and K
are computed as shown in Equations (1) and (5). This also leads
to an overall computation cost of 3 MULT and 1 PSUM. w-NAF
Interleaving leads to a cost of 99 ADD and 258 DBL (see Table
6). The necessary inversion and multiplications of scalars modulo
the order r of the elliptic curve are neglectable in comparison to
the operations on the points. A possible shortcoming is that the
optimization potential of having an s of half the size of all other
involved scalars is given away by multiplying it with a full size
scalar. A possible advantage of this approach is that the computa-
tion of G′, which is not needed again until the last step of PACE is
reached, can be delayed until then.

P̃KPCD = (S̃KPCD · s) ·G+ (S̃KPCD · x) · Y (8)

G′ = (S̃K
−1

PCD mod r) · P̃KPCD (9)

δ: Splitted Inversion. An also promising possibility to calcu-
late P̃KPCD is to reuse the precalculated points of G (see also
Section 4.3) and evaluate Equation (10) with the LimLee method.
Another advantage of this method is the possibility to start the cal-
culation of Equation (10) right after evaluating the first equation of
the PACE algorithm (cf. Figure 1). Equation (11) and (13) are cal-
culated with a standard w-NAF multiplication. Assumed the pre-
computed points or LimLee multiplication are available, the eval-
uation of Equation (10) leads to 51 ADD and 25 DBL (cf. Table
4). The evaluation of Equation (11) results to 50 Add and 257 DBL
(cf. Table 1). In total the Equations (10) to (12) that replace the
PSUM in approach γ lead to 102 ADD and 282 DBL.

P̃K1 = (S̃KPCD · s) ·G (10)

P̃K2 = (S̃KPCD · x) · Y (11)

P̃KPCD = P̃K1 + P̃K2 (12)

G′ = (S̃K
−1

PCD mod r) · P̃KPCD (13)

4.2 Tweaked Implementation
As seen above significant improvements are possible by applying
well chosen multiplication algorithms and by rearranging the equa-
tions to be solved. However, there are possibilities for improvement
concerning the implementation itself. In the following we consider



possibilities to speed up the protocol execution taking into account
at which points dedicated results have to be available and by avoid-
ing overhead due to implementation techniques.

Reorganization. Another possibility to speed up the calcula-
tions is the reorganization of their order. We present two different
kinds of reorganizations.

One possibility is to put some calculations at the beginning of the
protocol before the initial contact with the eID card. To do so we
need the domain-parameters of the used eID card saved on our de-
vice. These parameters can be stored at the first contact and can
be used henceforward. The generation of the private keys x and
S̃KPCD as well as the computation of the first ephemeral key X
(Equation (1)) could be done before actually starting the protocol.
Additionally multiples of the base-point G could be stored in the
NVM and later reused within the point multiplications. However,
this is currently not supported by the existing J2ME-libraries.

Another kind of reorganization regards the scheduling of the tasks
and calculations during the protocol. Using threads for communi-
cation with the eID card allows us to use the time waiting for an
answer from the card or the user for further calculations. The de-
cryption of s can be threaded for instance, since the result will be
required later in step (e) (cf. Figure 1).

Streamlining. To obtain even more performance improvement
we avoid heavy Java objects whenever possible. Instead, most val-
ues are represented by basic data structures to avoid the expensive
object creation and handling which is particularly important on re-
source constrained environments such as mobile phones.

4.3 Multiplication Algorithms
In the following three paragraphs we describe how to speed up the
5 necessary point multiplications from Equations (1) and (5) to (9)
using the findings from Section 3.

Equation (1). In Section 4.1 we stated that Equation (1) has to
be solved before all other equations. Furthermore, with the random
number x and the fix base-point G that can be permanently stored
after the first contact with the eID card the LimLee multiplication
algorithm performs best according to Table 4. This is quite clear as
the values precomputed during the LimLee algorithm can be stored
permanently on the mobile phone and can be reused to speed up the
calculation. Therfore we choose LimLee multiplication to evaluate
Equation (1) X = x ·G. Therewith the computation can be started
in a low priority thread before the PIN is entered or even before the
mobile device has contact to the eID card.

Equations (4) & (6) / (4) & (7) / (8) & (9). For the calcu-
lation of G′ and S̃KPCD we have different possibilities according
to the rearranged equations explained in Section 4.1. For the calcu-
lations of the product-sum of Equation (6) or alternatively Equation
(7) we use interleaving which performs best with Y randomly cho-
sen every session (cf. Table 6). As G′ therewith is different in each
session the additional point multiplication with S̃KPCD in Equa-
tion (4) is done with a simple w-NAF multiplication (cf. Table 1).
Alternatively, P̃KPCD could be implemented using Equation (8).

The evaluation of the product-sum is implemented using an inter-
leaving multiplication algorithm again based on the performance
calculations in Table 6. The necessary additional calculation of G′

with Equation (9) is done with a w-NAF multiplication again. Here
we implement all four variants α − δ to compare them with each
other as the theoretical results can not decide exactly which one is
the best.

Equation (5). Since P̃KPICC changes every session, off-line
precomputations and permanent storage of precomputed points are
not possible for the point multiplication from Equation (5). Ac-
cording to Table 1 the w-NAF algorithm performs best in that case
and therefore is chosen for the calculation.

5. IMPLEMENTATION
We implement the PACE protocol as a Java ME application and test
it on the mobile phone Nokia 62123. The connection between the
PICC and the PCD (mobile phone) is enabled by the NFC inter-
face and the data transmission proceeds by using Application Pro-
tocol Data Units (APDU) specified in ISO/IEC 7816 [20] and TR-
03110 [11]. For the required cryptographic functions, which are out
of scope of the Java ME platform, we use external cryptographic li-
braries such as FlexiProvider4 and Bouncy Castle5. These two cur-
rently seem to be the only available cryptographic libraries (Cryp-
tographic Service Providers, CSP) for elliptic curve arithmetic on
mobile devices. Other providers like IAIK6 cannot perform ellip-
tic curve cryptography in a mobile environment or are just out of
date (e.g. Cryptix7). The CSPs are used for the key derivation, de-
cryption of the nonce s, the map function (Generic Mapping), and
the key generation. The domain parameters D (stored in the file
EF.CardAccess on the PICC) include a set of Security Infos [11],
which defines the ECC domain parameters, the common base point
G, and the supported encryption algorithm. The data is encoded in
Abstract Syntax Notation One (ASN.1) data structures as specified
in [11]. Bouncy Castle includes an ASN.1 parser to decode the data
structures, the FlexiProvider uses the CoDec8 library developed by
Fraunhofer IGD.

5.1 Reference Tests
In a first approach, we implemented the PACE protocol in a straight-
forward manner without any improvements or optimizations de-
scribed in Section 4. The measurements of the performance tests
are depicted in Table 8. Step (1) shows the values for selecting
and reading the file EF.CardAccess (Select File and Read Binary
command [20]), and decoding the ASN.1 data structures. Step (2)
shows the initialization of PACE by using the MSE:Set AT com-
mand [11]. Steps (b) to (j) correspond to the steps depicted in
Figure 1. The key derivation of the step (a), (h) and (i) is a sin-
gle hash computation, therefore the cost can be disregarded and we
skip these steps in Table 8 and 9. The value zero indicates that
the operation takes less than one millisecond and the values of the
PICC include the transmission time of the APDUs in both direc-
tions. The column "Total" also includes values, which were caused

3Currently (Dec. 2010) the Nokia 6212 is the only NFC-enabled
cell phone available in Germany.
4http://www.flexiprovider.de
5http://www.bouncycastle.org
6http://jce.iaik.tugraz.at
7http://www.cryptix.org
8http://codec.sourceforge.net

http://www.flexiprovider.de
http://www.bouncycastle.org
http://jce.iaik.tugraz.at
http://www.cryptix.org
http://codec.sourceforge.net


Bouncy Castle FlexiProvider
Details PCD Total PCD Total PICC

1 424 676 274 530 256
2 459 1266 597 1261 134
b D(Kπ , z) 19 1396 253 1631 98
c x ·G 5667 7724 968 3346 731
d x · Y 5582 19006 797 5053
e s ·G 4819 23851 244 5307

(c) + (d) 19 1
f S̃KPCD ·G′ 5600 35450 889 7644 535
i S̃KPCD · P̃KPICC 5564 41026 1666 9333
j TPCD 42 41160 22 9458 87

Total [ms] 28195 41160 5718 9458 1841

Table 8: Reference PACE performance test on Nokia 6212

Bouncy Castle FlexiProvider
Details PCD Total PCD Total PICC

1 EF.CardAccess 120 381 100 390 290
2 MSE:Set AT 50 581 100 651 161
b D(Kπ , z) 10 661 50 761 60
c x ·G 171 1172 70 1181 350
d x · Y 20 1212 10 1211
e s ·G 20 1232 10 1221

(c) + (d) 0 0 0
f S̃KPCD ·G′ 30 1553 20 1512 261
i S̃KPCD · P̃KPICC 20 1562 40
j TPCD 10 1663 0 1622 60

Total [ms] 451 1663 400 1622 1182

Table 9: Reference PACE performance test on desktop PC

by additional operations such as creating Java objects, event han-
dling and control flow statements. The timings were measured im-
mediately before sending an APDU to the PICC and immediately
after receiving the response from the PICC.

The measured values show that the point multiplications spend ex-
tensive resources. The FlexiProvider performs the elliptic curve
computations significantly faster than the Bouncy Castle (cf. Ta-
ble 8). One reason for this is that the FlexiProvider uses the more
sophisticated exponentiation technique developed in [6] by default
instead of the simple Square & Multiply technique (which is used
by Bouncy Castle).

Additionally, we perform run-time tests on a desktop PC (Intel Core
2 Quad Q8300 2.5GHz) with an attached smart card reader (SCM
SDI010 [33]). Information about the hardware configuration of the
Nokia 6212 is not publicly available. The values in Table 9 for
the performance tests on the desktop PC are quite similar for both
CSPs and the major part of the run-time in this scenario is caused
by the PICC (approximately 70%). On average the PICC needs
about 1200 milliseconds in total, which can be characterized as a
lower bound of the overall run-time.

Before implementing and testing the optimized PACE protocol,
containing the optimizations stated in Section 4, we analyze the im-
plementations of the large number arithmetic in both CSPs, because
they determine the performance of the elliptic curve arithmetic. As
shown in Table 10 the implementation of the BigInteger class (for
large number arithmetic) in FlexiProvider is significantly faster for
the important functions ModInverse and ModMult than the respec-
tive implementation in Bouncy Castle. The performance of the el-
liptic curve arithmetic is also much better in the FlexiProvider than
in Bouncy Castle.

Function / Provider FlexiProvider [ms] BouncyCastle [ms]
Mod 0.093 0.0306
Multiply 0.1166 0.1143
Subtract 0.0261 0.0615
Add 0.0403 0.0406
ModInverse 4.7 20.77
ModPow (squared) 1.54 3.4
ModAdd 0.1591 0.077
ModMult 0.3976 2.9589
Point Mult 1051.3 7081.2
Point Addition 3.8 18.7
Point Doubling 2.3 23.8
Random 1364 7521

Table 10: Performance tests on Nokia 6212 (256 bit numbers)

Note the cost to generate a random number (cf. Table 10), which
is needed in step (b) and (f) of the PACE protocol (x and S̃KPCD

in Figure 1). Bouncy Castle needs approximately 15 seconds and
FlexiProvider 2.7 seconds in all to create these two random num-
bers. If we would use the same pseudo-random number generators
(PRNG) in both CSPs (Bouncy Castle’s PRNG in FlexiProvider)
run-time for FlexiProvider would be approximately 24.5 seconds
instead of 9.5 seconds in total.

5.2 Optimized Implementation
Since the performance measurements revealed that the performance
of the FlexiProvider is much better than the performance of Bouncy
Castle (cf. Section 5.1) we use the FlexiProvider for the imple-
mentation of the optimized PACE protocol with the optimizations
described in Section 4. It has an ratio of about 12:9 (ADD:DBL).

Algorithm 1 Precomputations for the optimized PACE protocol
Input: D {Let D denote the domain parameters including the

basepoint G}
Output: x, S̃KPCD, X
1: x← GenPrivKey()
2: S̃KPCD ← GenPrivKey()
3: X ← Multiply_LimLee(x,G) {(1)}
4: return (x, S̃KPCD, X)

The PACE protocol is implemented as depicted in Algorithm 2 us-
ing the precalculations from Algorithm 1. Algorithm 2 shows the
variant α as described in Section 4. The algorithms for the other
variants are straightforward by replacing the functions in lines 5
and 6 accordingly. The function GenPrivKey() generates a uni-
formly chosen random number smaller than the order r of the el-
liptic curve. Algorithm 1 is started immediately at the application
startup if the the domain parameters are available from a previous
session. If there are no matching domain parameters available on
the device, Algorithm 1 is started after the PIN entry, before Algo-
rithm 2 is started. Equation (1) and the generation of the private
keys are moved forward to Algorithm 1. The next point multipli-
cations from Equation (6) are implemented using an interleaving
algorithm (line 5). The last two multiplications (Equation (4) in
line 6 and Equation (5) in line 9) are implemented using a w-NAF
multiplication method.

There are two states for the protocol execution. The first state is the
initial run of the protocol after the installation of the application.
In this first state no saved points or domain parameters can be used
in the protocol. During the first run these values are stored in the



Algorithm 2 The optimized PACE protocol
Input: π,D {Let D denote the domain parameters including the

basepoint G}
Output: (KMAC,KENC)
1: z ← getZ()
2: s← D(Kπ, z)
3: sendX(X)
4: Y ← getY()
5: G′ ← Multiply_Interleaving(s, x,G, Y ) {(6)}
6: P̃KPCD ← wNafMult(S̃KPCD, G

′) {(4)}
7: sendX(P̃KPCD)
8: P̃KPICC ← getPK()
9: K ← wNafMult(S̃KPCD, P̃KPICC) {(5)}

10: TPCD ← MAC(KMAC, P̃KPICC)
11: sendT(TPCD)
12: TPICC ← getT()
13: if TPICC == MAC(KMAC, P̃KPCD) then
14: return (KMAC,KENC)
15: else
16: return Error during authentication
17: end if

Variant State 1 [ms] State 2 [ms]
α 7580 6280
β9 7330 6310
γ 7530 6360
δ 9034 7775

Table 11: Optimized PACE performance tests on Nokia 6212

NVM of the mobile device for future use. In the second state the
domain parameters, the base point G and precomputed points are
already available on the device and can be used during the protocol
execution. Since it can be assumed that the owner of the mobile
phone uses the application mostly with his own identity card, this
second state should cover most of the protocol executions.

5.3 Performance
The runtimes of the efficient implementation are depicted in Table
11. In contrast to the performance measurements of the prototyp-
ical implementation (cf. Table 8) we cannot measure every single
step, as they are strongly interwoven into each other through thread-
ing. Furthermore no API exists for Java ME to measure threads as
known by Java Profilers. The measurements distinguish between
the two states shown in the two columns. The first state can’t make
use of any stored values (precomputed points or domain parame-
ters). The second one uses the stored values to precalculate the
result of Equation (1). In variant δ Equation (10) also uses these
stored values. The rows show the four different possibilities of re-
arranging the equations as presented in Section 4.1. Thus, except
the variant δ the results are very similar so that the fastest variant
may vary depending on the used hardware and operating system.
Variant δ has some promising approaches but does not work so
well on the used device.

9As no available mobile Java CSP supports this directly, x1, x2,
Y1 and Y2 are generated in a preparation step and then passed to
a standard interleaving multiplication method together with s, G,
and Y .

6. POTENTIAL SIDE CHANNEL VULNER-
ABILITIES IN THE PACE PROTOCOL

Elliptic curve operations are known to be vulnerable to side chan-
nel attacks if no appropriate countermeasures are taken. The basic
problems are power analysis attacks [25] and timing attacks [24].
In this section, we briefly address the side channel security issues
of the PACE protocol on the side of the PCD given Algorithms 2
and 1 are used. First, we identify potential targets of such attacks
against the elliptic curve algorithms.

There are three scalar values that are used for point multiplication
in one run of the PACE protocol: x, s, and S̃KPICC. All of these
values are ephemeral, thus only a single protocol run is available to
an attacker to recover these values. If an attacker aims at gaining the
encryption and MAC keys derived in the course of the protocol, he
has to find all three scalar values. While s is only used in one scalar
multiplication, the other two are used in two scalar multiplications
each. Since differential analysis are based on far more recordings
than this, only simple analysis can be used to recover these values.

This basically rules out timing attacks, since they demand differ-
ential analysis by nature. One exception is an attack recovering
the hamming weight of the scalar against an unprotected binary
method: here the running time is linearly dependent on the ham-
ming weight of the scalar. However, the hamming weight will in
general not suffice to enable actual recovery of the secret scalar
values.

Concerning power analysis attacks, it should be pointed out that
a scenario, where the attacker has actual access to CPU’s power
supply is not realistic. However, electro-magnetic radiation (EM)
attacks [1] are similar in nature. Thus, it seems advisable to include
power analysis countermeasures in order to prevent EM attacks.
Note that in the case of a binary method for the elliptic curve scalar
multiplication, even simple EM analysis, i.e. an attack based on
a single recorded trace, is feasible. If the attacker can distinguish
the doubling and the addition operation, he can read the bits of the
secret scalar from the trace.

It is important not only to address the scalar multiplication, but also
the exponent recoding operations that are necessary when applying
NAF representations. Such an attack is presented in [32].

The symmetric operations involving secrets have to be secured as
well. Specifically, the derivation of the cipher key Kπ and the de-
cryption in step 2 of algorithm 2 must be secure against differential
analysis, since they involve the same secret values whenever a spe-
cific eID is used. The MAC and encryption operations performed
using KMAC and KENC after the PACE protocol also need to be
secure with respect to differential analysis to a certain extend, since
they will be used for a complete session.

7. FUTURE WORK
The differentiation between the two states of the optimized PACE
protocol is only necessary due to the fact that the Nokia 6212 only
recognizes the eID card when it is lying on the top of the cellphone.
The reason for this is the location of the antenna and its field inten-
sity. Most likely newer devices don’t have these disadvantages.
Thus, it would be possible for the user to enter the PIN while the
eID card has contact to the mobile phone. Then the phone would
be able to decide whether it knows the eID card or not and load the
necessary domain parameters to run Algorithm 1. Thereby the run-



times for the two states would be equal so that the differentiation
between the two states becomes obsolete.

The mobile device could, besides saving the base point and its
multiples for LimLee, also save multiples of that point generated
during the evaluation of Equation (1) for further use. This clearly
would save computation time. However, the available mobile cryp-
tographic libraries do not offer the possibility to use the stored
points. Thus, this optimization is left for future work including re-
spective modifications of the applied cryptographic library. Saving
precomputed values for the w-NAF multiplication is also possible
but does not lead to significant performance improvements since
the computation for a window size of 5 only includes 3 ADD and
1 DBL, which is negligible. Furthermore, accessing the file system
and reading the points is not free of charge either.

The method used for the second variant in Section 4.1 can be gen-
eralized to a method for various ei, Pi pairs with different sizes
of the ei. We call this Interleaved-Lim-Lee-Combining (ILLC).
Here, each ei, Pi pair where the scalar exceeds the determined size
is broken into ej , Pj pairs with the correct scalar size. For each
ei, Pi pair where the scalar ei is smaller than the determined size
the scalar ei is padded to the correct size. To our knowledge none
of the available cryptographic libraries offer this method, it seems
not even to exist in literature. Hence, we will investigate and im-
plement ILLC ourselves.

There are more possible optimizations which we did not apply, as
no available mobile provider supported their implementation. Ex-
amples involve using Montgomery Multiplication [28], efficient
point triplication [5] and quintuplication [27]. While we limited
ourselves in the work at hand to PACE optimizations realizable
without modifications to existing mobile providers, the next round
of PACE optimizations will include all mentioned methods which
require such modifications.

Another, rather adventurous optimization deliberately violates the
PACE protocol. Instead of choosing x and S̃KPCD uniformly at
random, the PCD could set x = s and S̃KPCD ≡ s−1 mod r,
where r is the order of the used elliptic curve. By this, computing
P̃KPCD is reduced to compute G + Y which annihilates 2 ran-
dom number generations and 2 MULT. Unfortunately, this allows
an attacker eavesdropping on the communication to reconstruct the
PIN. It is sufficient to once eavesdrop on a tuple D, z,X sent by
the PCD. The attacker then can systematically try each possible
PIN to decrypt z and verify it by checking whether X = s · G
holds. Hence, this optimization is not suitable for the eID card sce-
nario which is in the scope of this work. But it might be suitable for
other scenarios, e.g. where the communication between the PICC
and the PCD is secured against eavesdropping by other means.

8. CONCLUSION
This paper presented an efficient Java ME implementation of the
PACE protocol for mobile devices. The review of the implemen-
tation of the relevant algorithms and Java ME CSPs showed that
there are significant performance differences. The following inves-
tigation of the possible optimizations to a straightforward PACE
version revealed different possibilities which all result in a similar
theoretical speedup without changing existing CSPs. The presented
benchmarks of the different possible optimizations were the basis
for choosing concrete optimizations. The benchmarks revealed a
significant speedup in comparison to the not optimized version. A

discussion of potential side channel attacks on the optimized im-
plementation rounded the investigation up. The future work discus-
sion showed that there is more optimization potential when making
changes to the existing cryptographic libraries. All in all we suc-
ceeded in providing a platform independent efficient mobile PACE
implementation, but also showed where and how even more effi-
ciency could be gained.
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