
On the implementation of cryptosystems based

on real quadratic number �elds

(extended abstract)

Detlef H�uhnlein1 and Sachar Paulus2

1 secunet Security Networks AG, Germany
huehnlein@secunet.de
2 SAP AG, Germany

sachar.paulus@t-online.com

Abstract. Cryptosystems based on the discrete logarithm problem in
the infrastructure of a real quadratic number �eld [7, 19, 2] are very in-
teresting from a theoretical point of view, because this problem is known
to be at least as hard as, and when considering todays algorithms { as
in [11] { much harder than, factoring integers. However it seems that the
cryptosystems sketched in [2] have not been implemented yet and con-
sequently it is hard to evaluate the practical relevance of these systems.
Furthermore as [2] lacks any proofs regarding the involved approximation
precisions, it was not clear whether the second communication round, as
required in [7, 19], really could be avoided without substantial slowdown.
In this work we will prove a bound for the necessary approximation
precision of an exponentiation using quadratic numbers in power product
representation and show that the precision given in [2] can be lowered
considerably. As the highly space consuming power products can not
be applied in environments with limited RAM, we will propose a simple
(CRIAD1-) arithmetic which entirely avoids these power products. Beside
the obvious savings in terms of space this method is also about 30%
faster. Furthermore one may apply more sophisticated exponentiation
techniques, which �nally result in a ten-fold speedup compared to [2].

1 Introduction

Unlike for imaginary quadratic orders, there is no polynomial time algorithm
known, which decides whether two given ideals in a real quadratic order O� are
equivalent, and consequently it is impossible to set up DL-based cryptosystems
in real quadratic class groups Cl(�). However, as noted by Shanks [21], there is
some infrastructure in the cycle of reduced principal ideals, which resembles an
abelian group. Buchmann, Williams and Scheidler [7, 18, 19] showed how to con-
struct a Di�e-Hellman-like key agreement procedure using this infrastructure.
They (essentially) represent a principal ideal A by a pair (a; a), where a =
A is

1 CRIAD is an abbreviation for Close Reduced Ideal and Approximated relative
Distance.

the reduced ideal closest to A and a is a rational approximation to the distance
log(
) between a and A. The major problem with their approach is that, because
it is (in general) impossible to �nd the closest reduced ideal when using a �xed
approximation precision, they compute a pair of very close reduced ideals, i.e.
the left and right neighbour, and uniquely determine the common key in a second
communication round. Because this additional round is necessary in their setup,
it is impossible to construct more advanced { e.g. signature- { protocols. In [2] it
was proposed to use the exact relative generator
 2 Q(

p
�) in power product

representation [6] and only compute a rational approximation of its logarithm in
the very end. The claimed that it is possible to avoid the second communication
round and hence implement advanced cryptographic protocols (c.f. [3]). However
as [2] lacks any proofs regarding the involved approximation precisions it was
not clear whether the second communication round, as required in [7, 19], can
be avoided at all, and if, without substantially decreasing the e�ciency.

In this work we will prove a bound for the necessary approximation precision
of an exponentiation using quadratic numbers in power product representation
and show that the precision given in [2] may be lowered considerably. For a
discriminant with 1024 bit and 160 bit secret exponents in a Di�e-Hellman key-
agreement protocol we will see that a precision of 512+2+160+3 = 677 bits is
su�cient, where [2] suggest a precision of 1024 + 6 � 160+ 6 = 1990 bits for this
scenario. As in more sophisticated cryptographic protocols it is necessary to have,
not only an exponentiation but also, a multiplication (and possibly inversion)
routine available, we will introduce the so called CRIAD-multiplication, which
is (essentially) associative (see Corollary 1). Using CRIADmult one is able to
construct a binary exponentiation routine which requires a precision of 512 +
2+2 �160+2 = 836 bits in the above scenario, but entirely avoids power products
and solely uses
oating point numbers for the logarithms. Note that this is very
important in environments with restricted RAM. This binary exponentiation
variant (CRIADexp Algorithm 3) with a precision of 836 bits already yields a
running time, which is about 30% faster than the exponentiation variant using
power products and an approximation precision of 677 bits. Another important
feature of this approach is that one may use CRIADmult to implement more
sophisticated exponentiation routines, which �nally result in a ten-fold speedup
compared to [2].

The paper is organized as follows: In Section 2 we will recall the necessary
basics concerning the infrastructure of the principal class in a real quadratic
number �eld. In Section 3 we carry together the necessary de�nitions concerning
rational approximations of real numbers. In Section 4 we will recall the repre-
sentation of principal ideals from [2] and prove lower bounds for the required
approximation precision to provide a unique representation (see Proposition 2),
which is necessary to avoid the second communication round, as required in [7,
19]. In Section 5 we will show what precision is necessary to implement an ex-
ponentiation technique using power products. In Section 6 we will introduce the
CRIAD-arithmetic which is necessary to implement more sophisticated protocols
and allows to avoid the application of power products. In Section 7 we will use

this basic arithmetic to derive more sophisticated exponentiation techniques.
Due to space restrictions we will only give the results and refer to [12] for a de-
tailed presentation and proofs. We will conclude this work by providing timings
of a �rst implementation in Section 8. In the full paper [12] we will also provide
a complexity analysis and the treatment of more sophisticated cryptographic {
e.g. signature { protocols.

2 The infrastructure of the principal class in real

quadratic number �elds

In this section we will recall the very basic notions of the infrastructure of the
principal class in real quadratic number �elds needed in the sequel and refer to
[8, 10, 1, 13] for a complete reference.

Let Q(
p
�) be the real quadratic number �eld of discriminant � > 0 and O�

be its ring of integers. We denote O�-ideals by gothic letters a; b; : : : ;A;B; : : :.
An important invariant of the number �eld Q(

p
�) is the regulator R� = log ",

where " is the smallest unit larger than one. It is well known (see e.g. [20]), that
the computation of R� is at least as hard as factoring �.

Two O�-ideals a and b are called equivalent if there is a
 2 Q(
p
�) such

that a
 = b.
 is called a relative generator of b w.r.t. a.
 is unique up to
multiplication by units. Equivalence of ideals is an equivalence relation. The
equivalence classes are called ideal classes. If a = O� then b =
O� is called a
principal ideal and
 is simply called a generator of b. The set of principal ideals
is denoted by P� and forms an in�nite abelian subgroup of I�. The factor group
Cl(�) = I�=P� is a �nite abelian group and is called the ideal class group of
Q(
p
�).

For two equivalent ideals a and b =
a we de�ne the distance between a and
b by

�(a; b) =
1

2
log

����

���� (mod R�); (1)

where
 = (x � y
p
�)=z denotes the (real) conjugate of
 = (x + y

p
�)=z. If

a = O�, we simply write �(b) instead of �(O�; b).
Given an ideal A we denote by �() (see e.g. [13, REDUCE REAL, Algorithm

2.6]) the reduction operator, which computes an equivalent reduced ideal a =
�(A). We denote (n � 1) successive applications of �() by �n(). If a is a reduced
ideal then �n(a) is also reduced and there is some l 2 ZZ>1, such that a = �l(a).
In [22] it is shown that, for arbitrary �, the smallest such l may be as large as
O(
p
� log log�).

Let a = (a; b) be a reduced ideal. Then one may use [13, Algorithm 2.11] to

compute the right neighbour a+ = (a+; b+) = �(a), where �(a; a+) =
1
2 log

��� b++
p
�

b+�
p
�

���
and [13, Algorithm 2.12] respectively to compute the left neighbour a� = (a�; b�) =

��1(a), where �(a; a�) = � 1
2 log

��� b�+
p
�

b
�

�
p
�

��� of a.

It is easy to see that traveling around a complete circle and obtaining �l(a) =
a and thus a(�) = a yields

�(�l(a); a) =
1

2
log

����
�

��� = 1

2
log

����
�2

N(�)

���� =
1

2
log(�2) = log � = R�:

Instead of this naive strategy, which is obviously only applicable for very
small �, Shanks [21] made use of the infrastructure of the principal class of a
real quadratic order to compute R�. In the following we will recall the most
important properties of this infrastructure.

In [15] it was shown that

log
�
1=
p
�+ 1

�
< j�(a; a+)j < log

p
�; (2)

and for three consecutive ideals a; a+; a++ we have

j�(a; a++)j > log 2: (3)

Moreover, it is immediate from the de�nition that for three equivalent ideals
a; b; c we have

�(a; b) + �(b; c) � �(a; c) (mod R�) (4)

and for two pairs (a; b) and (c; d) of principal ideals

�(ac; bd) � �(a; c) + �(b; d) (mod R�): (5)

The last assertions are not surprising, as the set of (invertible) principal
ideals P� forms a group under multiplication. On the other hand it is easy to
see that the subset of reduced principal ideals, together with some combination of
multiplication and reduction, does not form a group, because such an operation
is either not associative or not closed.

However it is possible to show that the operation �, de�ned by multiplication
followed by reduction, is "close to" being a group operation:

Proposition 1. Let a; b be reduced ideals and c = a� b = �(ab). Then

j�(c; ab)j = j�(c)� (�(a) + �(b))j < 2 log�: (6)

Proof. See [8, Proposition 5.8.4].

We will see that this de�ciency w.r.t. a group operation can be repaired,
without applying the space consuming power product representation from [6].
In the multiplication procedure for principal ideals in CRIAD-representation
(CRIADmult, Algorithm 2) we will additionally compute rational approxima-
tions for distances, which allow to correct the "error" introduced by reduction.
We will see in Corollary 1, that this strategy makes the operation CRIADmult

(essentially) associative, if one uses a su�ciently high approximation precision.

3 Rational appromations of real numbers

The distances between equivalent ideals, as de�ned in (1), are of the form
1=2 log j
=
j, for
 2 Q(

p
�)�, and hence in general irrational numbers. As

the most practical way to handle these distances seems to be the computation of
{ su�ciently accurate { rational approximations, we will follow [5, 17] und carry
together the necessary de�nitions and properties of
oating point numbers.

Let r 2 IR, r 6= 0. Then we de�ne b(r) = blog2 jrjc+ 1 and b(0) = 0.

De�nition 1. A
oating point number is a pair f = (m; e), where m; e 2 ZZ,
m 6= 0 or m = 0 and e = 0. m is called the mantissa and e is called the exponent
of f . f = (m; e) represents the rational number q = m � 2e�b(m).

De�nition 2. Let r 2 IR and k 2 ZZ; j 2 Q>0.

1. An absolute k-approximation for r is a
oating point number f = (m; e),
such that jf � rj < 2�k and e � b(m)� k � 1.

2. An absolute (j; k)-approximation for r is a
oating point number f = (m; e),
such that jf � rj < j

2k and e � b(m)� k + dlog2(j)e � 1.

Remark 1. The latter de�nition is necessary to consider the round-o�-error in
some computation more closely. Here we will shortly relate a (j; k)-approximation
to an l-approximation.

Let f = (m; e), where e � b(m) � k + dlog2(j)e � 1, be an absolute (j; k)-

approximation for r 2 IR. Then jf � rj < j
2k

= 2log2(
j

2k
) = 2log2(j)�k and

one immediately sees that f is precisely an absolute l-approximation for l =
k � dlog2(j)e. On the other side it is clear from the de�nition that a (1; k)-
approximation is precisely a k-approximation.

We use Markus Maurer's functions from the xbig
oat-class of LiDIA [16] to
implement the necessary
oating point arithmetic. A theoretical treatment of
these functions may be found in [17]. Besides addition, subtraction and the com-
parison of
oating point numbers we will also need the following two functions:

{ Trunc(f; k)
denotes the LiDIA-function Truncate(f; k) and returns the "k signi�cant
bits" of a
oating point number f = (m; e) = m � 2e�b(m) by deleting the
last b(m)�k last bits of the mantissa m. To prove a bound for the necessary
precision to make our proposed CRIAD-representation unique, we will make
use of [17, Lemma 2.3.1], which states that given a k-approximation f =
(m; e) of a real number r, f 0 = Trunc(f; k+ e) is a k� 1-approximation of r.

{ qlog(x; y; k)
denotes the LiDIA-function a:absolute Ln approximation(k) and returns
on input of a number
 = x + y

p
� a k-approximation of Lenstra's [15]

logarithm Log(
) = 1=2j
=
j. A thorough description of this function may
be found in [17, Section 6.1.4].

4 Bounds for the uniqueness of the CRIAD-representation

In this section we introduce the CRIAD-representation of principal ideals, as
sketched in [2]. After a formal speci�cation of the required properties we will
derive bounds for the involved precision to make this representation unique.

To make the line of thought leading to this important representation more
transparent, we will start with de�ning a RIAD-representation, where we do not
require that the reduced ideal in this representation is close to the represented
ideal.

De�nition 3. Let A be a (fractional) principal O�-ideal, f = (m; e) a
oating
point number and k 2 ZZ; j 2 Q>0.

A (j; k)-RIAD-representation of A is a pair (a; f), where a is an arbitrary
reduced principal ideal and f is an absolute (j; k)-approximation for the distance
�(A; a) between A and a. A (1; k)-RIAD-representation is simply called k-RIAD-
representation.

Given a, not necessarily reduced, principal ideal A in standard representation
it is easy to compute a k-RIAD-representation (a; f) for it. The procedure (a; f) =
Std2RIAD(A; k) uses the standard LiDIA-routine (a;
) = REDUCE(A) (see e.g.
[13, REDUCE REAL, Algorithm 2.6]), which computes a = �(A) and the relative
generator
 = (x+ y

p
�)=z = A=a, and computes f = �qlog(x; y; k).

As the reduced ideal a in this representation will, for example, be used to
derive a common key in a Di�e-Hellman key agreement procedure, it is espe-
cially important to guarantee that both communication partners end up with the
same reduced ideal a, representing A = gab, while performing entirely di�erent
computations.

As there are no further requirements for the reduced ideal a in the RIAD-
representation (a; f) of a principal ideal A and there are c = O(

p
� log log�)

reduced ideals in the principal cycle, there are obviously c di�erent RIAD-repre-
sentations for A. Among all these RIAD-representations for A we will now elect
the CRIAD-representation, which will be shown to be uniquely determined if the
involved precision is su�ently high. If the precision would be too low, such that
there would be two valid CRIAD-representations (ai; fi), i 2 f1; 2g, a1 6= a2, for
an ideal A = gab, then a key agreement procedure would entirely fail to work, or
would need to be "repaired" using a second communication round, as proposed
in [7, 19].

Suppose for a moment, that the distances could be determined exactly. Then
one could simply de�ne the unique representative for A to be the reduced ideal
a with the (in absolute value) smallest distance and possibly { if A is precisely
inbetween two reduced ideals { positive distance. In this case it is clear that a
is uniquely determined.

However, since we are dealing with rational approximations, i.e. we only have
k < 1 many correct bits of the distances at our disposal, some more consid-
erations are necessary to make the reduced ideal in the CRIAD-representation
unique.

Suppose, that all computations were performed with a su�ciently high preci-
sion k, that we can guarantee, that the reduced ideal a in the RIAD-representation
(a; f) is either the left or right neighbour of A and recall that the function
Trunc(g; l) returns (only) the l signi�cant bits of a
oating point number g.

Let (a1; f1), with f1 = (m1; e1), and (a2; f2), with f1 = (m1; e1), be two
canditates for the CRIAD-representation. If jTrunc(f1; k + e1)j < jTrunc(f2; k +
e2)j, then the decision is easy and we choose (a1; f1) to be the unique CRIAD-
representation.

In the worst caseA is { in the scope of the �xed approximation precision { pre-
cisely inbetween the two reduced ideals a1 and a2. Then the RIAD-representations
(a1; f1) and (a2; f2) have the following properties:

For the distances we have

j�(A; a1)� f1j < 2�k and j�(A; a2)� f2j < 2�k; (7)

since we have k-RIAD-representations and

Trunc(f1; k + e1) = �Trunc(f2; k + e2); (8)

since A is { in the scope of the �xed approximation precision { precisely inbe-
tween a1 and a2.

We assume w.l.o.g. that f1 > 0 and choose (a1; f1) to be the unique CRIAD-
representation for A, even if the precise distances may satisfy

j�(A; a1)j > j�(A; a2)j:

Thus the reduced ideal a in the CRIAD-representation (a; f) is not necessar-
ily the reduced ideal closest to A, but nevertheless uniquely determined, if the
approximation precision, as part of the system parameters, is su�ciently high.

Now we will bring the above vague ideas in a more formal shape, such that
we will be able to determine the necessary precision in order to guarantee that
the reduced ideal a in a CRIAD-representation is uniquely determined.

De�nition 4. Let k 2 ZZ; j 2 Q>0 and l = k�dlog2(j)e. Then a (j; k)-CRIAD-
representation of A is de�ned to be a (j; k)-RIAD-representation (a; f), where
f = (m; e), of A, satisfying the following properties:

1. jTrunc(f; l+e)j � jTrunc(f 0; l+e0)j for all (j; k)-RIAD-representations (a0; f 0),
where f 0 = (m0; e0), of A and

2. if (a1; f1) and (a2; f2) are two (j; k)-RIAD-representations, which satisfy (1.),
where f1 > 0 and f2 < 0, then (a; f) = (a1; f1).

If A is reduced, then we call (A; 0) a (0; k)-CRIAD-representation for any k 2
ZZ. A (1; k)-CRIAD-representation is simply called a k-CRIAD-representation.

De�nition 5. A (j; k)-CRIAD-representation (a; f) is called unique, if there is
no l = k � dlog2(j)e-CRIAD-representation (a0; f 0), a0 6= a, for a given ideal A,
which satis�es (1.) and possibly (2.) in above de�nition.

It remains to determine a bound for the precision to make such a CRIAD-
representation unique. For this purpose we will proceed in two steps. In Lemma
1 we will present a di�erent formulation of the uniqueness-problem for CRIAD-
representations. We will show that this representation is unique if in a certain
real, open, interval of width 2�k+dlog2(j)e+2 there is only one reduced ideal. In
Proposition 2 we will derive a bound such that in an interval of said width there
can be only one reduced ideal.

Lemma 1. Let (a1; f1), where f1 = (m1; e1), be a (j; k)-CRIAD-representation
of a principal ideal A, l = k � dlog2(j)e and f = Trunc(f1; l+ e1). This CRIAD-
representation is unique, if there is no reduced ideal a2 6= a1, such that

�(a2) 2]�(A)� f � 2�l+1; �(A)� f + 2�l+1[

.

Proof. Let l = k � dlog2(j)e. Considering the above de�nition, we see that the
(j; k)-CRIAD-representation (a1; f1), with f1 = (m1; e1), for a principal ideal A
is not unique if there is (at least) one other (j; k)-CRIAD-representation (a2; f2),
with f2 = (m2; e2), for A, such that a2 6= a1 and f = Trunc(f1; l + e1) =
Trunc(f2; l + e2).

Considering the involved distances, we have

j�(A; ai)� fij < j=2k � 2�l; i 2 f1; 2g;

as (ai; fi) are (j; k)-CRIAD-representations.
By [17, Lemma 2.3.1] we loose one bit of precision by computing

f = Trunc(f1; l + e1) = Trunc(f2; l + e2):

I.e. as fi, i 2 f1; 2g, are absolute l-approximations for �(A; ai) we know that f
is an absolute l � 1-approximation for �(A; ai) and we obtain

j�(A; ai)� f j = j�(A)� f � �(ai)j < 2�l+1; i 2 f1; 2g:

This shows that non-uniqueness occurs, if there is some reduced ideal a2 6= a1,
such that

�(a2) 2]�(A)� f � 2�l+1; �(A)� f + 2�l+1[:

2

Looking back to our original argumentation, Lemma 1 shows that non-
uniqueness occurs, if there is a reduced ideal a0, such that the CRIAD-representation
(a0; f 0) satis�es all requirements in the de�nition, but a0 is not the direct left or
right neighbour of A.

To derive a bound for the uniqueness of the CRIAD-representation, it is { by
Lemma 1 { su�cient to investigate, whether in a real, open interval of width
2�k+dlog2(j)e+2 there may be two (or more) reduced ideals.

Proposition 2. Let (a; f) be a (j; k)-CRIAD-representation of a principal O�-
ideal A, l = k � dlog2(j)e and

�(�) = � log2

�
log

�
1=
p
�+ 1

��
+ 2: (9)

Then the (j; k)-CRIAD-representation (a; f) of A is unique, if l � �(�).

Proof. Let l = k � dlog2(j)e. Then { by Lemma 1 { it is su�cient to explore,
whether two neighbouring, reduced ideals a; a+ may lie in an open interval of
width 2�l+2. By (2) we have

j�(a; a+)j > log(1=
p
�+ 1): (10)

We have uniqueness, if it is impossible that two neighbouring ideals lie in the
interval of width 2�l+2. By (10) we have 2�l+2 � log(1=

p
� + 1) < j�(a; a+)j

and therefore

l � � log2(log(1=
p
�+ 1)) + 2 = �(�):

2

Remark 2. During the execution of a cryptographic protocol one needs to take
care that one remains above this minimum precision.

For x > 1 we have log(1=x+ 1) > 1=(x+ 1) and one obtains the bound

�(�) < log2(
p
�+ 1) + 2: (11)

Thus it is su�cient, that { at the end of any cryptographic protocol { about
log2(�)=2 correct bits of the distances are at our disposal. Note that the cursory
"analysis" in [2] suggests a minimum precision of log2(�) bits.

5 CRIAD-Exponentiation using power products

In this section we will show what precision is su�cient in an exponentiation
routine for ideals in CRIAD-representation using power products, as in [2]. As
above, our analysis will reveal that the precision bounds given in [2] are way too
high.

We will use the LiDIA-function (b; d) = CLOSE(a; t; k) which on input of
a reduced ideal a, a rational number t and an approximation precision k will
return a reduced ideal b such that �(b) is { with respect to k { close to �(a) + t
and a k-approximation d to Log(a=b). A detailed description of this function can
be found in [17, Section 8.4]. Note that the functionality of CLOSE is equal to
the functionality of the procedure TARGET in [2].

Let n 2 ZZ>0 and l = blog2(n)c. Then (nl; � � � ; n0) is the binary expansion of

n =
Pl

i=0 ni2
i, where ni 2 f0; 1g for 0 � i � l � 1, nl = 1.

Algorithm 1 CRIADexpPP

Input: The (j; k)-CRIAD-representation (a; f) of a principal O�-ideal A, the
exponent n = (nl; � � � ; n0) 2 ZZ>0, the �nal precision k and the additional
precision z � 0.

Output: The (J; k)-CRIAD-representation (b; g) of An, where J = (2l+1�1)j+
3 � 2�z.

 = 1
h = a

for i = l � 1 downto 0 do
(h; �) REDUCE(h2)

2�
if ni = 1 then
(h; �) REDUCE(h � a)

�

end if

end for

t f � n� qlog(
; k + z)
(h; h) CLOSE(h; t; k + z)
h t� h
return(h; h)

Proof. Recall that in any call (a; �) = REDUCE(A) we have a = A=�.
Thus we obtain at the end of the for-loop an = h
 and compute the
oating

point number t such that �(h) + t is close to �(An). Therefore the correctness,
disregarding the approximation precision, follows from the correctness of CLOSE
[17, Section 8.4].

It remains to show the correctness of the J-value. Let � = An=h. Then
we have jt� Log(�)j < nj2�k + 2�(k+z) � (2l+1 � 1)j2�k + 2�(k+z) and at
the very end jAn � (�(h+ h)j < (2l+1 � 1)j2�k + 3 � 2�(k+z) which shows that
J = (2l+1 � 1)j + 3 � 2�z is correct. 2

To allow a fair comparison of the di�erent exponentiation strategies we need
to consider their behaviour within some cryptographic protocol. We will only
give bounds for the Di�e-Hellman key-agreement-protocol here and treat more
sophisticated protocols in the �nal paper [12].

Proposition 3. Let a; b < 2l+1 be the secret exponents in a Di�e-Hellman
key-agreement protocol using CRIADexpPP and a reduced ideal as common base.
Then it is su�cient if both partners use k � �(�) and z � l + 3.

Proof. As both partners start with a reduced ideal, i.e. a (0; k)-CRIAD-repre-
sentation, they obtain a (j1; k) CRIAD-representation with the �rst exponentia-
tion, where j1 = 3�2�z. The second exponentiation yields a (j2; k)-representation,
where j2 = (2l+1�1)j1+3 �2�z = 3 �2l+1�z < 2l+3�z. This is a k-approximation,
if z � l + 3. 2

This proposition explains the required precision of 512 + 2 + 160 + 3 = 677
bits, for 1024 bit � and 160 bit exponents, stated in the introduction.

6 CRIAD-arithmetic without power products

Regardless of the applied exponentiation technique it is necessary to have the
procedure CRIADmult { and possibly CRIADinv { available to implement more
sophisticated { e.g. signature { protcols. Therefore we will develop this basic
arithmetic for principal ideals in CRIAD-representation. We will show in Corol-
lary 1, that CRIADmult is (essentially) a group operation. Thus one may const-
struct exponentiation techniques based on this procedure which do not require
the power product representation and consequently can be applied in environ-
ments with limited RAM.

In our presentation of CRIADmult we will need a procedure (b; g) = RIAD2

CRIAD((a; f); z) which uses right- or leftsteps to convert a given (j; k)-RIAD-
representation approximation into the (j+1; k)-CRIAD-representation. One may2

use the procedure LOCAL CLOSE [17, Section 8.2] for this purpose.

Algorithm 2 CRIADmult

Input: The (ja; k)-CRIAD-representation (a; a) of a principal ideal A, the (jb; k)-
CRIAD-representation of a principal ideal B, the �nal precision k and an ad-
ditional precision z 2 ZZ�0, where k � �(�) + log2(ja + jb + 2�z).

Output: The unique (ja + jb + 2�z; k)-CRIAD-representation (c; c) of AB.

p k + z + 1
(h; h) Std2RIAD(a � b; p)
(c; c) RIAD2CRIAD((h; h+ a+ b); p)
return(c; c)

Proof. The proof will appear in the full paper [12].
2

Now it is easy to see that this operation is (essentially) associative, provided
that the approximation precision is chosen to be su�ciently large.

Corollary 1. Let z � 0 and (a; a); (b; b); (c; c) be the unique (ja; k); (jb; k); (jc; k)-
CRIAD-representations for the principal ideals A;B;C, J = ja+ jb+ jc+2�z+1,
where k � �(�)+dlog2(J)e. Let (d1; d1) = CRIADmult(CRIADmult((a; a); (b; b); z);
(c; c); z), where d1 = (m1; e1) and (d2; d2) = CRIADmult((a; a);CRIADmult((b; b);
(c; c); z); z), where d2 = (m2; e2). Then d1 = d2 and Trunc(d1; k+e1) = Trunc(d2; k+
e2).

2 Note that LOCAL CLOSE makes use of (small) power products. Due to space restric-
tions we need to refer to the �nal paper [12] for our method RIAD2CRIAD, which
avoids power products at the cost of a slightly higher internal precision.

Proof. See [12]. 2

Remark 3. Since we have chosen Lenstra's distance Log(
) = 1=2 log j
=
j, as
proposed in [15], instead of Shanks' naive distance log(
) [21], it is easy to see
that the inversion of a principal ideal in CRIAD-representation is essentially free
of cost and especially does not impose any round-o�-errors. If ((a; b); f) is a
(j; k)-CRIAD-representation of A, then ((a;�b);�f) = CRIADinv((a; b); f) is a
(j; k)-RIAD3-representation of A�1. This fact will be used to construct signed
digit exponentiation routines, which are slightly more e�cient.

7 CRIAD-Exponentiation without using power products

As CRIADmult essentially behaves like a group operation it is straightforward to
construct { more sophisticated { exponentiation routines for principal ideals in
CRIAD-representation.

Due to space restrictions we will only present the exponentiation routine
based on the classical binary square and multiply strategy in detail here. For
the more sophisticated exponentiation routines we will only present the results
of the precision analysis; the corresponding proofs appear in the full paper [12].

Algorithm 3 CRIADexp

Input: The (j; k)-CRIAD-representation (a; f) of a principal O�-ideal A, the
exponent n = (nl; � � � ; n0) 2 ZZ>0, the �nal precision k and the additional
precision z � 0.

Output: The (J; k)-CRIAD-representation (b; g) of An, where J = (2l+1�1)j+
2�z(2l+1 � 2).

(h; h) (a; f)
for i = l � 1 downto 0 do
(h; h) CRIADmult((h; h); (h; h); k; z)
if ni = 1 then
(h; h) CRIADmult((h; h); (a; f); k; z)

end if

end for

return(h; h)

Remark 4. It should be noted that the presented square and multiply strategy
is the so called "left-to-right" variant. This is important, because it features less
error propagation for reduced ideals than the "right-to-left" variant [14], while
the number of group operations is the same. This is yet another point, where
the precision stated in [2] can be easily improved.

3 It should be noted that, if the ideal is precisely inbetween two reduced ideals, another
right step might be necessary to obtain the CRIAD-representation.

Proposition 4. Let a; b < 2l+1 be the secret exponents in a Di�e-Hellman key-
agreement protocol using CRIADexp and a reduced ideal as common base. Then
it is su�cient if both partners use k � �(�) and z � 2l + 2.

In a similar manner we obtain the following bounds for more sophisticated
exponentiation techniques; for the proofs we need to refer to the �nal paper [12].

Proposition 5. On input of a (j; k)-CRIAD-representation and the exponent n
with l = blog2(n)c, the sliding m-bit window method (see e.g. [9]) produces a
(J; k)-CRIAD-representation, where J = 2l+m+1j + 2l+m+12�z:

Let a; b < 2l+1 be the secret exponents in a Di�e-Hellman key-agreement
protocol using CRIADexpwindow and a reduced ideal as common base. Then it is
su�cient if both partners use k � �(�) and z � 2(l+m) + 3.

Proposition 6. On input of a (j; k)-CRIAD-representation, the appropriate pre-
computed values and the exponent n with l = blog2(n)c, the signed 2m-digit ver-
sion of the BGMW exponentiation method [4] produces a (J; k)-CRIAD-represen-
tation, where J = 2l+m+2j + 2l+m+32�z:

Let a; b < 2l+1 be the secret exponents in a Di�e-Hellman key-agreement
protocol using CRIADexpBGMW and a reduced ideal as common base. Then it is
su�cient if both partners use k � �(�) and z � 2(l+m) + 6.

If the �rst exponentiation is performed with CRIADexpBGMW and the second
exponentiation is performed with CRIADexpwindow, which might be often used in
practice, then it is su�cient if both partners use k � �(�) and z � 2(l+m)+5.

8 Timings of a �rst implementation

In this section we provide timings of a �rst implementation using the di�erent
exponentiation methods discussed in this work. For the sake of comparison, we
also provide timings of an implementation of the procedure EXP as given in [2].
The timings in Table 1 are given in seconds and correspond to randomly chosen
discriminants and exponents of the respective bit length on a Pentium II with
166 MHz using LiDIA 2.0 [16]. As precision we used the necessary precision
for the Di�e-Hellman protocol as given in the Propositions 3, 4, 5, 6 and [2]
respectively.

The results for 500 bit discriminants and 100 bit exponents, which are closest
to real world requirements, indicate that an exponentiation with CRIADexp is
more than twice as fast as the exponentiation routine EXP from [2] and can {
using precomputation { be accelerated to obtain a more than ten times faster
exponentiation. Moreover our approach without applying power products seems
to save not only a considerable amount of space, but also up to 30% time.
Because the relative speedup tends to increase with higher parameters one might
conjecture that our method is also asymptotically preferable. This issue will be
discussed in the full paper [12].

9 Acknowledgement

We would like to thank Renate Scheidler, Markus Maurer and Hugh C. Williams
for fruitful discussions and for making us aware of mistakes in an earlier draft
of this paper.

References

1. I. Biehl and J. Buchmann: Algorithms for Quadratic Orders. Proceedings of Sym-
posia in Applied Mathematics. 48. American Mathematical Society: 1994. pp. 425-
451.

2. I. Biehl, J. Buchmann and C. Thiel: Cryptographic Protocols Based on Discrete
Logarithms in Real-quadratic Orders, Advances in Cryptology { CRYPTO '94,
LNCS 839, Springer, 1995, pp. 56 { 60

3. I. Biehl, B. Meyer and C. Thiel: Cryptographic Protocols Based on Real-Quadratic
A-�elds. Proceedings of ASIACRYPT '96. Springer: 1996. pp. 15-25.

4. E. Brickell, D. Gordon, K. McCurley, D. Wilson: Fast Exponentiation with Pre-
computation, Advances in Cryptology, EUROCRYPT '92, LNCS 658, Springer,
1993, pp. 200-207

5. J. Buchmann, M. Maurer: Approximate Evaluation of L(1; ��), Technical Report,
Darmstadt, University of Technology, 1997

6. J. Buchmann, C. Thiel, H.C. Williams: Short representation of quadratic integers,
Computational Algebra and Number Theory, Mathematics and its Applications
325, 1995, pp. 159 { 185

7. J. Buchmann and H.C. Williams: A Key Exchange System Based on Real Quadratic
Fields. Proceedings of CRYPTO '89. Springer: 1989. pp. 335-343.

8. H. Cohen: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics 138. Springer: Berlin, 1993.

9. H. Cohen: Analysis of the
exible window powering algorithm, preprint available
via http://www.math.u-bordeaux.fr/ cohen/

10. L.K. Hua: Introduction to Number Theory. Springer-Verlag: New York, 1982.

11. D. H�uhnlein: Quadratic orders for NESSIE - Overview and parameter sizes
of three public key families, submitted to ISSE 2000, preprint available via
http://www.informatik.tu-darmstadt.de/TI/Veroeffentlichung/TR/Welcome.html

12. D. H�uhnlein, M. Maurer, S. Paulus: On the complexity and e�ciency of cryptosys-
tems using real quadratic number �elds, Technical report TU Darmstadt, to appear,
2000

13. M.J. Jacobson Jr.: Subexponential Class Group Computation in Quadratic Orders,
PhD-thesis, TU Darmstadt, appeared in Shaker, Aachen, ISBN 3-8265-6374-3,
1999

14. D.E. Knuth: The Art of Computer Programming. Vol. 2: Seminumerical algorithms.
Addison-Wesley, Reading MA, 1981.

15. H.W. Lenstra: On the computation of regulators and class numbers of quadratic
�elds, London Math. Soc. Lecture Notes, 56, 1982, pp. 123-150

16. LiDIA: A c++ library for algorithmic number theory, via
http://www.informatik.tu-darmstadt.de/TI/LiDIA

17. M. Maurer: Regulator approximation and fundamental unit computation for real
quadratic orders, PhD-thesis, TU-Darmstadt, to appear 2000

18. R. Scheidler, J. Buchmann, H.C. Williams: Implementation of a key exchange pro-
tocol using real quadratic �elds (extended abstract), Advances in Cryptology { EU-
ROCRYPT '90, Springer, LNCS 473, 1991, pp. 98 { 109

19. R. Scheidler, J. Buchmann and H.C. Williams: A Key-Exchange Protocol Using
Real Quadratic Fields. Journal of Cryptology 7. 1994. pp. 171-199.

20. R.J. Schoof: Quadratic Fields and Factorization. In: H.W. Lenstra, R. Tijdeman,
(eds.): Computational Methods in Number Theory. Math. Centrum Tracts 155.
Part II. Amsterdam, 1983. pp. 235-286.

21. D. Shanks, The infrastructure of a real quadratic �eld and its applications. Proc.
Number Theory Conference, Boulder. 1972, pp. 217-224.

22. H.C. Williams: A numerical investigation into the length of the period of the con-
tinued fraction expansion of

p
D, Math. Comp. 36, 1981, pp. 593-601

Bitlength Bitlength Exponentiation method

of of EXP CRIADexpPP CRIADexp CRIADexpwindow CRIADexpBGMW

Exponent Discriminant see [2] see Prop.3 see Prop.4 see Prop.5 see Prop.6

20 100 0.50 0.38 0.33 0.44 0.11

40 100 1.10 0.94 0.88 0.93 0.28

60 100 2.14 1.82 1.64 1.71 0.39

80 100 3.52 2.85 2.75 2.68 0.60

100 100 5.71 4.18 4.12 3.79 0.82

20 200 0.99 0.77 0.60 0.66 0.17

40 200 2.09 1.70 1.37 1.49 0.27

60 200 3.68 2.91 2.47 2.47 0.55

80 200 5.66 4.23 3.90 3.68 0.72

100 200 8.68 5.99 5.66 5.21 1.10

20 300 1.76 0.87 0.83 0.99 0.27

40 300 3.35 1.92 1.93 1.81 0.44

60 300 5.33 3.35 3.18 2.91 0.82

80 300 8.13 5.00 4.83 4.23 1.04

100 300 11.53 7.91 6.76 6.37 1.48

20 400 1.76 1.48 1.10 1.32 0.32

40 400 3.79 3.07 2.36 2.59 0.55

60 400 6.64 4.89 3.96 4.06 0.88

80 400 10.10 7.25 5.99 5.88 1.20

100 400 14.88 10.00 8.73 8.35 1.70

20 500 3.35 2.58 1.38 1.43 0.43

40 500 7.14 4.61 2.97 2.91 0.66

60 500 10.88 7.30 5.06 4.61 1.15

80 500 15.98 10.27 7.75 6.96 1.65

100 500 22.52 13.84 10.44 9.66 2.09

Table 1. Timings for di�erent CRIAD-Exponentiations

